Show simple item record

dc.contributor.advisorGuacaneme Suárez, Edgar Alberto - directorspa
dc.contributor.authorCastiblanco Peña, Yara Zulenyspa
dc.date.accessioned2016-06-09T20:00:16Z
dc.date.accessioned2017-12-12T21:21:41Z
dc.date.available2016-06-09T20:00:16Z
dc.date.available2017-12-12T21:21:41Z
dc.date.issued2014
dc.date.issued2014
dc.identifier.otherTO-17476spa
dc.identifier.urihttp://hdl.handle.net/20.500.12209/126
dc.description.abstractEste documento describe los aspectos metodológicos considerados para la elaboración de un inventario de documentos relacionadas con propuestas y experiencias en torno al uso de una perspectiva histórica en la Enseñanza y Aprendizaje de las ecuaciones, que será puesto al servicio de docentes de Matemáticas que tengan interés por profundizar en el estudio de las ecuaciones y/o mejorar su práctica profesional. Inicialmente se describe en qué consiste el inventario de fuentes bibliográficas de documentos que versan sobre ecuaciones, luego se describen los momentos y etapas del proceso de selección, y por último, se realiza un análisis y reflexión de los resultados obtenidos.spa
dc.formatPDFspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.subjectMatemáticas - Enseñanzaspa
dc.subjectEcuacionesspa
dc.subjectFormación profesional de maestrosspa
dc.subjectEducación matemática - Historiaspa
dc.subjectEspecialización en Educación Matemáticas - Tesis y Disertaciones Académicasspa
dc.titleEcuaciones desde una perspectiva histórica: un inventario de fuentes bibliográficas para ser empleado por profesores de matemáticasspa
dc.typeTesisspa
dc.publisher.programEspecialización en Educación Matemáticaspa
dc.rights.accessAcceso abierto
dc.relation.referencesBaumgart, J. (1971). The History of Algebra.In Historical Topics for the Mathematics Classroom (pp. 233–263). Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesBaumgart, J. K. (1994). Tópicos de História da Matemática para uso em sala de aula. Álgebra (H. H. Domingues, Trans. Vol. 4). Sao Paulo: Atual Editora Ltda.spa
dc.relation.referencesBerlinghoff, W. P., & Gouvêa, F. Q. (2004). Math through the Ages. A Gentle History for Teacher and Others (Expanded Edition ed.). Washington & Farmington: Oxton House Piblishers & The Mathematical Association of America.spa
dc.relation.referencesBerlinghoff, W., & Gouvea, F. (2004).A Square and Things Quadratic Equations. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 127–132). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978.spa
dc.relation.referencesBerlinghoff, W., & Gouvea, F. (2004). Algebra Comes of Age. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 37– 42). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978.spa
dc.relation.referencesBerlinghoff, W., & Gouvea, F. (2004). Arabic Mathematics. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 28–32). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978.spa
dc.relation.referencesBerlinghoff, W., & Gouvea, F. (2004). Intrigue in Rnaissance Italy Solving Cubic Equations. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 127–132). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978.spa
dc.relation.referencesBerlinghoff, W., & Gouvea, F. (2004). Linear Thinking Solving First Degree Equations.In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 121–126). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978.spa
dc.relation.referencesBerlinghoff, W., & Gouvea, F. (2004). Something Less Than Nothing? Negative Numbers. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 93–100). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978.spa
dc.relation.referencesBerlinghoff, W., & Gouvea, F. (2004). The cossic Art Writing Algebra with Sybols. In Math through the Ages: A Gentle History for Teachers and Others (Expanded E., pp. 113–120). Oxton House Publishers and The Mathematical Association of America. doi:10.1086/428978.spa
dc.relation.referencesBoyer, C. B. (1993). Tópicos de História da Matemática para uso em sala de aula. Cálculo (H. H. Domingues, Trans. Vol. 6). Sao Paulo: Atual Editora Ltda.spa
dc.relation.referencesBradley, R. E. (2011). Cusps: Horns and Beaks. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 89–99). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesBruckheimer, M., & Arcavi, A. (2000). Mathematics and Its History: An Educational Partnership. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 135–140). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesCalinger, R. (Ed.). (1996). Vita mathematica. Historical research and integration with teaching. [Washington, D.C.]: Mathematical Association of America.spa
dc.relation.referencesCooke, R. (2011). Numerical solution of equations. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 17–21). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesCooke, R. (2011). The Sources of Algebra. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 1–6). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesCurtin, D. J. (2011).Complex Numbers, Cubic Equations, and Sixteenth-Century Italy. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 39–43). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesDorier, J.-L.(2000). Use of History in a Research Work on the Teaching of Linear Algebra. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 99–110). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesDorothy Wolfe. (1971). Discriminant. In Historical Topics for the Mathematics Classroom (pp. 323–324).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesEllis, W. (1971).The binomial Theorem.In Historical Topics for the Mathematics Classroom (pp. 264–266).Washington DC: National Council of Teachers of Mathematics.Ellis, W. (1971).The binomial Theorem.In Historical Topics for the Mathematics Classroom (pp. 264–266).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesEves, H. (1994). Tópicos de História da Matemática para uso em sala de aula. Geometría (H. H. Domingues, Trans. Vol. 3). Sao Paulo: Atual Editora Ltda.spa
dc.relation.referencesFauvel, J., &Maanen, J. (1997). The Role of the History of Mathematics in the Teaching and Learning of Mathematics: Discussion Document for an ICMIspa
dc.relation.referencesFauvel, J., & van Maanen, J. (2000). History in Mathematics Education. The ICMI Study. Dordrecht/Boston/London: Kluwer Academic Publisher.spa
dc.relation.referencesFauvel, J., Cousquer, É., Furinghetti, F., Heiede, T., Lit, C., Smid, H., Tzanakis, C. (2000). Bibliography for further work in the area In J. Fauvel & J. van Maanen (Eds.), History in mathematics education. The ICMI Study (pp. 371-418). Dordrecht: Kluwer Academic Publishers.spa
dc.relation.referencesFletcher, S. (2002). An idea for teaching equations. Mathematics in School, 31(1), 28–29.spa
dc.relation.referencesFrançois, K., & Van Bendegem, J. P. (Eds.). (2007). Philosophical Dimensions in Mathematics Education (Vol. 42): Springer.spa
dc.relation.referencesFührer, L. (1991). Historical Stories in the Mathematics Classroom. For the Learning of Mathematics, 11(2), 24–31.Retrieved from http://www.jstor.org/stable/40248014.spa
dc.relation.referencesFuller, L. (1971). Determinants and Matrices. In Historical Topics for the Mathematics Classroom (pp. 281–284).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesFundamental Theorem of Algebra. (1971). In Historical Topics for the Mathematics Classroom (pp. 316–318). Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesFuringhetti, F. (2007).Teacher education through the history of mathematics. Educational Studies in Mathematics, 66, 131–146. doi:10.1007/s10649- 006-9070-0.spa
dc.relation.referencesGuacaneme, E. A. (2008). Una aproximación a la relación Historia de las Matemáticas -Conocimiento del profesor de matemáticas. Paper presented at the Tercer Encuentro de Programas de Formación Inicial de Profesores de Matemáticasspa
dc.relation.referencesGuacaneme, E. A. (2011). La Historia de las Matemáticas en la educación de un profesor: razones e intenciones. Ponencia presentada en la Décimo tercera Conferencia Iberoamericana de Educación Matemática (XIII CIAEMIACME), Recife, Brasil.spa
dc.relation.referencesGundlach, B. H. (1994). Tópicos de História da Matemática para uso em sala de aula. Números e numerais (H. H. Domingues, Trans. Vol. 1). Sao Paulo: Atual Editora Ltda.spa
dc.relation.referencesHeeffer, A. (2007). Learning Concepts through the History of Mathematics: The case of Simbolic Algebra. In K. Francois & J. P. Van Bendegem (Eds.), Philosophical Dimensions in Mathematics Education (V 42.). New York: Mathematics Education Library.spa
dc.relation.referencesHeiede, T. (2002). Denmark: A very short in-service course in the history of mathematics. In F. John & M. Jan Van (Eds.), History in Mathematics Education: The ICMI Study (6th ed., pp. 131–134). New York: Kluwer Academic Publishersspa
dc.relation.referencesHelfgott, M. (2004).Two examples from the natural sciences and their relationship to the history and pedagogy of mathematics. Mediterranean Journal for Research in Mathematic., 3(1-2), 147–166.spa
dc.relation.referencesHitchcock, G. (1995). Dramatizing the Birth and Adventures of Mathematical Concepts: Two Dialogues. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 36–40).Washington DC: The Mathematical Association of America.spa
dc.relation.referencesHitchcock, G. (1995). Dramatizing the Birth and Adventures of Mathematical Concepts: Two Dialogues. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 36–40).Washington DC: The Mathematical Association of America.spa
dc.relation.referencesHood, R. (1971). Solution of Polynomial Equations of Third and Higher Degrees.In Historical Topics for the Mathematics Classroom (pp. 276– 279).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesHoriuchi, A. (2014). Higher Mathematics. In A. Karp & G. Schubling (Eds.), Handbook on the History of Mathematics Education (pp. 170–171). New York: Springer.spa
dc.relation.referencesHoriuchi, A. (2014). Notes for a History of the Teaching of Algebra. In A. Karp & G. Schubling (Eds.), Handbook on the History of Mathematics Education (pp. 459–472). New York: Springer.spa
dc.relation.referencesHughes, B. (1995). The Earliest Correct Algebraic Solutions of Cubic Equations. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 107–112).Washington DC: The Mathematical Association of America.spa
dc.relation.referencesICONTEC. 2008. Norma Técnica Colombiana NTC 1486. Documentación. Presentación de Tesis, Trabajos de grado y otros trabajos de investigación.spa
dc.relation.referencesJardine, D., & Shell-Gellasch, A. (Eds.). (2011). Mathematical Time Capsules. Historical Modules for the Mathematics Classroom: The Mathematical Association of America.spa
dc.relation.referencesJardine, D. (2011). Completing the Square trough the Milennia. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 23–28). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesJoseph, G. G. (1997). What Is a Square Root? A Study of Geometrical Representation in Different Mathematical Traditions. Mathematics in School, 26(3), 4–9. Retrieved from http://www.jstor.org/stable/30215281 Karp, A., & Schubring, G. (Eds.). (2014). Handbook on the History of Mathematics Education New York: Springerspa
dc.relation.referencesKatz, V. (2007).Stages in the History of Algebra with Implications for Teaching. Educational Studies in Mathematics, 66, 185–201. doi:10.1007/s10649- 006-9023-7.spa
dc.relation.referencesKatz, V. J. (Ed.). (2000b). Using History to Teach Mathematics: An International Perspective: The Mathematical Association of America.spa
dc.relation.referencesKatz, V., Dorier, J.-L., Bekken, O., & Sierpinska, A. (2002). The role of historical analysis in predicting and interpreting students’ difficulties in mathematics. In F. John & M. Jan Van (Eds.), History in Mathematics Education: The ICMI Study (6th ed., pp. 149–154). New York: Kluwer Academic Publishers.spa
dc.relation.referencesKatz, V., Dorier, J.-L., Bekken, O., & Sierpinska, A. (2002). The role of historical analysis in predicting and interpreting students’ difficulties in mathematics. In F. John & M. Jan Van (Eds.), History in Mathematics Education: The ICMI Study (6th ed., pp. 149–154). New York: Kluwer Academic Publishers.spa
dc.relation.referencesLumpkin, B. (1995). From Egypt to Benjamin Banneker: African origins of false position solutions. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 279–288).Washington DC: The Mathematical Association of America.spa
dc.relation.referencesMan-Keung, S. (2000).An Excursion in Ancient Chinese Mathematics. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 159–166). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesMontelle, C. (2011). Roots, Rocks, and Newton-Raphson Algorithms for approximating p2 3000 Years Apart. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 229–240). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesMosvold, R., Jakobsen, A., & Jankvist, U. T. (2014). How Mathematical Knowledge for Teaching May Profit from the Study of History of Mathematics. Science & Education, 23(1), 47–60. doi:10.1007/s11191- 013-9612-7.spa
dc.relation.referencesNCTM. (1969). Historical Topics for the Mathematics Classroom. Thirty-first Yearbook. Washington, D.C.: National Council of Teacher of Mathematics.spa
dc.relation.referencesOfir, R., &Arcavi, A. (1992). Word Problems and Equations: An Historical Activity for the Algebra Classroom. The Mathematical Gazette, 76(475), 69–84. Retrieved from http://links.jstor.org/sici?sici=0025- 5572(199203)2:76:475<69:WPAEAH>2.0.CO;2-4.spa
dc.relation.referencesPanagiotou, E. N. (2014). A Voyage of Mathematical and Cultural Awareness for Students of Upper Secondary School. Science& Education, 23(1), 79–123. doi:10.1007/s11191-013-9653-y.spa
dc.relation.referencesPark, R. (1971). Horner’s Method. In Historical Topics for the Mathematics Classroom (pp. 274–275).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesPerlis, S. (1971). Congruence (Mod m). In Historical Topics for the Mathematics Classroom (pp. 288–290).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesPratt, G. (1971). Early Greek Algebra. In Historical Topics for the Mathematics Classroom (pp. 291–301).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesRadford, L. (1996). An Historical Incursion into the Hidden side of the Early Development of Equations. BSHM.spa
dc.relation.referencesRadford, L., & Georges Guérette. (2000). Second Degree Equations in the Classroom: A Babylonian Approach. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 69–75). Washington DC: The Mathematical Association of Americaspa
dc.relation.referencesRadford, L., & Puig, L. (2007). Syntax and Meaning as Sensous, Visual, Historical forms of Algebraic Thinking. Educational Studies in Mathematics, 66(2), 145–164. doi:10.1007/s10649-006-9024-6.spa
dc.relation.referencesRead, C. (1971). Arabic Algebra, 820-1250.In Historical Topics for the Mathematics Classroom (pp. 305–309).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesSchwartz, R. K. (2011). Adapting the Medieval “Rule of Double False Position” to the Modern Classroom. In D. Jardine & A. S. Gellasch (Eds.), Mathematical Time Capsules: Historical Modules for the Mathematics Classroom (pp. 29–37). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesSena (s.f). ¿Qué tipos de lectura hay?. Recuperado de http://biblioteca.sena.edu.co/paginas/cap4e4.html.spa
dc.relation.referencesSriraman, B. (Ed.). (2012). Crossroads in the History of Mathematics and Mathematics Education (Vol. Monograph 12): IAP/Information Age Pub.spa
dc.relation.referencesSloyen, S. (1971). Algebra in Europa, 1200-1850. In Historical Topics for the Mathematics Classroom (pp. 309–311). Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesSwetz, F. (1995).Enigmas of Chinese Mathematics. In R. Calinger (Ed.), Vita Mathematica. Historical Research and integration with teaching (pp. 92– 97).Washington DC: The Mathematical Association of America.spa
dc.relation.referencesSwetz, F. J., Fauvel, J., Bekken, O., Johansson, B., & Katz, V. J. (Eds.). (1995). Learn from the Masters! Washington, D.C.: The Mathematical Association of America.spa
dc.relation.referencesUPN, D. (2011). Criterios para la realización y evaluación de trabajo de grado. Bogotá.spa
dc.relation.referencesWaldeck, E., & Mainville, J. (1971). Rule of False Position. In Historical Topics for the Mathematics Classroom (p. 332).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesWestern, D. (1971). Descartes’s Rule of Signs. In Historical Topics for the Mathematics Classroom (pp. 318–320).Washington DC: National Council of Teachers of Mathematics.spa
dc.relation.referencesWinicki, G. (2000). The Analysis of Regula Falsi as an Instance for Professional Development of Elementary School Teachers. In V. Katz (Ed.), Using History to Teach Mathematics: An international Perspective (pp. 129–133). Washington DC: The Mathematical Association of America.spa
dc.relation.referencesWrestler, F. (1971).Hindu Algebra. In Historical Topics for the Mathematics Classroom(pp. 301–305).Washington DC: National Council of Teachers of Mathematics.spa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record