Show simple item record

dc.contributor.advisorCruz Bonilla, Yesid Javier
dc.contributor.authorCampo Martínez, Tomás David
dc.coverage.spatialBogotá, Colombiaspa
dc.date.accessioned2023-03-08T18:00:39Z
dc.date.available2023-03-08T18:00:39Z
dc.date.issued2022
dc.identifier.urihttp://hdl.handle.net/20.500.12209/18271
dc.description.abstractEn el presente trabajo de grado se formuló como problemática encontrar las simetrías del Universo de de Sitter mediante un análisis geométrico desde la perspectiva de la geometría de Riemann. La Cosmología modela al espacio-tiempo como una variedad pseudoriemanniana, ya que esta permite hacer geometría diferencial y preserva la causalidad de los eventos. El objetivo general fue encontrar los vectores de Killing asociados al Universo de de Sitter, por lo que se plantearon como objetivos específicos construir la variedad de Riemann para estudiar la estructura matemática utilizada para modelar el espacio-tiempo, realizar la solución de de Sitter según el modelo estándar de la Cosmología para conocer la métrica de dicho Universo y solucionar las ecuaciones de Killing para este Universo con el propósito de encontrar los vectores que se asocian a las simetrías.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.sourceinstname:Universidad Pedagógica Nacionalspa
dc.subjectVariedadspa
dc.subjectCosmologíaspa
dc.subjectVectoresspa
dc.subjectSimetríasspa
dc.subjectDe Sitterspa
dc.subjectUniversospa
dc.subjectVectores de Killingspa
dc.titleAnálisis geométrico del modelo cosmológico de de Sitter.spa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.programLicenciatura en Físicaspa
dc.subject.keywordsManifoldeng
dc.subject.keywordsCosmologyeng
dc.subject.keywordsVectorseng
dc.subject.keywordsSymmetrieseng
dc.subject.keywordsDe Sittereng
dc.subject.keywordsUniverseeng
dc.subject.keywordsKilling Vectorseng
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesAdámek, J., Herrlich, H. y Strecker, G. (2004). Abstract and Concrete Categories.spa
dc.relation.referencesArkhangel’skii, A. (1990). General Topology I. Springer-Verlag Berlin Heidelberg.spa
dc.relation.referencesArnold, V. (1989). Mathematical Methods of Classical Mechanics. Springer-Verlag.spa
dc.relation.referencesCruz, Y., Salas, J. y Duque, R. (2014). Notas de Geometría Diferencial y Aplicaciones a la Física. Universidad Colegio Mayor de Cundinamarca.spa
dc.relation.referencesEngelking, R. (1989). General Topology. Heldermann Verlag Berlin.spa
dc.relation.referencesDas, N.D.H. and Desiraju, H. (2016). Killing vectors of FLRW metric (in comoving coordinates) and zero modes of the scalar Laplacian.spa
dc.relation.referencesGreub, W.H. (1967). Multilinear Algebra. Springer-Verlag.spa
dc.relation.referencesHackbusch, W. (2012). Tensor Spaces and Numerical Tensor Calculus. Springer-Verlag.spa
dc.relation.referencesHawking, S., Ellis, G. (1973). The Large Scale Structure of Space-Time. Cambridge University Press.spa
dc.relation.referencesLang, S. (1985). Differential Manifolds. Springer-Verlag.spa
dc.relation.referencesLang, S. (1995). Differential and Riemannian Manifolds. Springer-Verlag.spa
dc.relation.referencesLee, J. (2012). Introduction to Smooth Manifolds. Springer-Verlag.spa
dc.relation.referencesLiesen, J., Mehrmann, V. (2015). Linear Algebra. Springer-Verlag.spa
dc.relation.referencesMcMullen, C. (2013). Topology: Course Notes. Harvard University.spa
dc.relation.referencesMilnor, J. (1965). Topology From the Differentiable Viewpoint. The University Press of Virginia.spa
dc.relation.referencesMunkres, J. (1975). Topology. Prentice Hall.spa
dc.relation.referencesRubiano, G. (2010). Topología General: Un primer curso. Universidad Nacional de Colombia.spa
dc.relation.referencesRomeu, J.A. (2014). Derivation of Friedmann equations.spa
dc.relation.referencesRojas, W.C. (2015). Simetrías, cantidades conservadas y vectores de Killing. Universidad Nacional de Colombia.spa
dc.relation.referencesSerre, J-P. (1992). Lie Algebras and Lie Groups. Springer.spa
dc.relation.referencesSohrab, H. (2010). Basic Real Analysis. Springer-Verlag.spa
dc.relation.referencesWeinberg, S. (1972). Gravitation and cosmology. Principles and applications of the general theory of relativity. John Wiley and Sons, Inc.spa
dc.publisher.facultyFacultad de Ciencia y Tecnologíaspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1feng
dc.description.degreenameLicenciado en Físicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.title.translatedGeometric analysis of de Sitter's cosmological model.eng
dc.description.abstractenglishIn this degree work, the problem of finding the symmetries of the de Sitter Universe was formulated by means of a geometrical analysis from the perspective of Riemannian geometry. Cosmology models space-time as a pseudoriemannian variety, since this allows differential geometry and preserves the causality of events. The general objective was to find the Killing vectors associated to the de Sitter Universe, so the specific objectives were to construct the Riemannian manifold to study the mathematical structure used to model space-time, to perform the de Sitter solution according to the standard model of Cosmology to know the metric of this Universe and to solve the Killing equations for this Universe with the purpose of finding the vectors associated to the symmetries.eng
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/