dc.contributor.advisor | Cruz Bonilla, Yesid Javier | |
dc.contributor.author | Campo Martínez, Tomás David | |
dc.coverage.spatial | Bogotá, Colombia | spa |
dc.date.accessioned | 2023-03-08T18:00:39Z | |
dc.date.available | 2023-03-08T18:00:39Z | |
dc.date.issued | 2022 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12209/18271 | |
dc.description.abstract | En el presente trabajo de grado se formuló como problemática encontrar las simetrías del Universo de de Sitter mediante un análisis geométrico desde la perspectiva de la geometría de Riemann. La Cosmología modela al espacio-tiempo como una variedad pseudoriemanniana, ya que esta permite hacer geometría diferencial y preserva la causalidad de los eventos. El objetivo general fue encontrar los vectores de Killing asociados al Universo de de Sitter, por lo que se plantearon como objetivos específicos construir la variedad de Riemann para estudiar la estructura matemática utilizada para modelar el espacio-tiempo, realizar la solución de de Sitter según el modelo estándar de la Cosmología para conocer la métrica de dicho Universo y solucionar las ecuaciones de Killing para este Universo con el propósito de encontrar los vectores que se asocian a las simetrías. | spa |
dc.format.mimetype | application/pdf | spa |
dc.language.iso | spa | spa |
dc.publisher | Universidad Pedagógica Nacional | spa |
dc.rights.uri | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.source | reponame:Repositorio Institucional de la Universidad Pedagógica Nacional | spa |
dc.source | instname:Universidad Pedagógica Nacional | spa |
dc.subject | Variedad | spa |
dc.subject | Cosmología | spa |
dc.subject | Vectores | spa |
dc.subject | Simetrías | spa |
dc.subject | De Sitter | spa |
dc.subject | Universo | spa |
dc.subject | Vectores de Killing | spa |
dc.title | Análisis geométrico del modelo cosmológico de de Sitter. | spa |
dc.type | info:eu-repo/semantics/bachelorThesis | spa |
dc.publisher.program | Licenciatura en Física | spa |
dc.subject.keywords | Manifold | eng |
dc.subject.keywords | Cosmology | eng |
dc.subject.keywords | Vectors | eng |
dc.subject.keywords | Symmetries | eng |
dc.subject.keywords | De Sitter | eng |
dc.subject.keywords | Universe | eng |
dc.subject.keywords | Killing Vectors | eng |
dc.type.hasVersion | info:eu-repo/semantics/acceptedVersion | |
dc.rights.accessrights | info:eu-repo/semantics/openAccess | |
dc.rights.accessrights | http://purl.org/coar/access_right/c_abf2 | |
dc.relation.references | Adámek, J., Herrlich, H. y Strecker, G. (2004). Abstract and Concrete Categories. | spa |
dc.relation.references | Arkhangel’skii, A. (1990). General Topology I. Springer-Verlag Berlin Heidelberg. | spa |
dc.relation.references | Arnold, V. (1989). Mathematical Methods of Classical Mechanics. Springer-Verlag. | spa |
dc.relation.references | Cruz, Y., Salas, J. y Duque, R. (2014). Notas de Geometría Diferencial y Aplicaciones a la Física. Universidad Colegio Mayor de Cundinamarca. | spa |
dc.relation.references | Engelking, R. (1989). General Topology. Heldermann Verlag Berlin. | spa |
dc.relation.references | Das, N.D.H. and Desiraju, H. (2016). Killing vectors of FLRW metric (in comoving coordinates) and zero modes of the scalar Laplacian. | spa |
dc.relation.references | Greub, W.H. (1967). Multilinear Algebra. Springer-Verlag. | spa |
dc.relation.references | Hackbusch, W. (2012). Tensor Spaces and Numerical Tensor Calculus. Springer-Verlag. | spa |
dc.relation.references | Hawking, S., Ellis, G. (1973). The Large Scale Structure of Space-Time. Cambridge University Press. | spa |
dc.relation.references | Lang, S. (1985). Differential Manifolds. Springer-Verlag. | spa |
dc.relation.references | Lang, S. (1995). Differential and Riemannian Manifolds. Springer-Verlag. | spa |
dc.relation.references | Lee, J. (2012). Introduction to Smooth Manifolds. Springer-Verlag. | spa |
dc.relation.references | Liesen, J., Mehrmann, V. (2015). Linear Algebra. Springer-Verlag. | spa |
dc.relation.references | McMullen, C. (2013). Topology: Course Notes. Harvard University. | spa |
dc.relation.references | Milnor, J. (1965). Topology From the Differentiable Viewpoint. The University Press of Virginia. | spa |
dc.relation.references | Munkres, J. (1975). Topology. Prentice Hall. | spa |
dc.relation.references | Rubiano, G. (2010). Topología General: Un primer curso. Universidad Nacional de Colombia. | spa |
dc.relation.references | Romeu, J.A. (2014). Derivation of Friedmann equations. | spa |
dc.relation.references | Rojas, W.C. (2015). Simetrías, cantidades conservadas y vectores de Killing. Universidad Nacional de Colombia. | spa |
dc.relation.references | Serre, J-P. (1992). Lie Algebras and Lie Groups. Springer. | spa |
dc.relation.references | Sohrab, H. (2010). Basic Real Analysis. Springer-Verlag. | spa |
dc.relation.references | Weinberg, S. (1972). Gravitation and cosmology. Principles and applications of the general theory of relativity. John Wiley and Sons, Inc. | spa |
dc.publisher.faculty | Facultad de Ciencia y Tecnología | spa |
dc.type.local | Tesis/Trabajo de grado - Monografía - Pregrado | spa |
dc.type.coar | http://purl.org/coar/resource_type/c_7a1f | eng |
dc.description.degreename | Licenciado en Física | spa |
dc.description.degreelevel | Pregrado | spa |
dc.type.driver | info:eu-repo/semantics/bachelorThesis | eng |
dc.identifier.instname | instname:Universidad Pedagógica Nacional | spa |
dc.identifier.reponame | reponame:Repositorio Institucional de la Universidad Pedagógica Nacional | spa |
dc.identifier.repourl | repourl: http://repositorio.pedagogica.edu.co/ | |
dc.title.translated | Geometric analysis of de Sitter's cosmological model. | eng |
dc.description.abstractenglish | In this degree work, the problem of finding the symmetries of the de Sitter Universe was formulated by means of a geometrical analysis from the perspective of Riemannian geometry. Cosmology models space-time as a pseudoriemannian variety, since this allows differential geometry and preserves the causality of events. The general objective was to find the Killing vectors associated to the de Sitter Universe, so the specific objectives were to construct the Riemannian manifold to study the mathematical structure used to model space-time, to perform the de Sitter solution according to the standard model of Cosmology to know the metric of this Universe and to solve the Killing equations for this Universe with the purpose of finding the vectors associated to the symmetries. | eng |
dc.rights.creativecommons | Attribution-NonCommercial-NoDerivatives 4.0 International | |