Show simple item record

dc.contributor.authorLuque Arias, Carlos Julio
dc.contributor.authorMora Mendieta, Lyda Constanza
dc.contributor.authorTorres Díaz, Johana Andrea
dc.date.accessioned2018-07-26T14:51:57Z
dc.date.available2018-07-26T14:51:57Z
dc.date.created2014
dc.date.issued2014
dc.identifier.otherISBN 978958865041es_Es
dc.identifier.urihttp://hdl.handle.net/20.500.12209/7864
dc.descriptionEste libro es la segunda edición de uno publicado en 2005, producto del proyecto de investigación “Actividades matemáticas para el desarrollo de procesos lógicos: El proceso de medir”, desarrollado entre 2002 y 2004, con el apoyo del Centro de Investigaciones de la Universidad Pedagógica Nacional (CIUP). Esta segunda edición recoge las reflexiones del Grupo de Álgebra sobre la enseñanza de los números racionales y reales, que surgen del trabajo con los estudiantes del programa de Licenciatura en Matemáticas de la Universidad Pedagógica Nacional. Las actividades didácticas propuestas van dirigidas especialmente a la formación inicial de profesores de matemáticas, en relación con tres procesos: clasificar, medir e invertir; y con ellos, la formación de los conceptos de relación de equivalencia, números racionales no negativos, números irracionales positivos, números reales no negativos y números reales; también se tiene en cuenta el proceso histórico que generó la construcción de estas estructuras numéricas. Desde un acercamiento intuitivo, fundamentado en preguntas, respuestas, contrapreguntas y reformulación de respuestas a problemas que surgen de manera natural en la discusión; los estudiantes cuestionan, argumentan, ejemplifican, proponen contraejemplos, establecen acuerdos y generalizan, simulando un ambiente científico en el aula, donde prima la actividad matemática sobre la repetición y la memoria. Cuando es necesario se recurre a la geometría euclidiana en busca de objetos y procedimientos que permitan realizar tareas en las que el álgebra tiene limitaciones, mostrando la permanente relación entre estas dos vertientes del conocimiento matemático. Se hace énfasis en las propiedades algebraicas de los números reales, primero en una construcción a partir de los números naturales y luego desde una perspectiva axiomática, sin profundizar en sus propiedades topológicas. Como epílogo se presentan varias formas de resolver ecuaciones algebraicas, algunas históricas, otras inventadas en clase, otras donde se aplican ideas simples y geniales de algunos matemáticos clásicos; con procedimientos aritméticos, algebraicos, de la geometría euclidiana, de la geometría analítica y hasta de la geometría proyectiva.es_Es
dc.description.abstractEste libro es la segunda edición de uno publicado en 2005, producto del proyecto de investigación “Actividades matemáticas para el desarrollo de procesos lógicos: El proceso de medir”, desarrollado entre 2002 y 2004, con el apoyo del Centro de Investigaciones de la Universidad Pedagógica Nacional (CIUP). Esta segunda edición recoge las reflexiones del Grupo de Álgebra sobre la enseñanza de los números racionales y reales, que surgen del trabajo con los estudiantes del programa de Licenciatura en Matemáticas de la Universidad Pedagógica Nacional. Las actividades didácticas propuestas van dirigidas especialmente a la formación inicial de profesores de matemáticas, en relación con tres procesos: clasificar, medir e invertir; y con ellos, la formación de los conceptos de relación de equivalencia, números racionales no negativos, números irracionales positivos, números reales no negativos y números reales; también se tiene en cuenta el proceso histórico que generó la construcción de estas estructuras numéricas. Desde un acercamiento intuitivo, fundamentado en preguntas, respuestas, contrapreguntas y reformulación de respuestas a problemas que surgen de manera natural en la discusión; los estudiantes cuestionan, argumentan, ejemplifican, proponen contraejemplos, establecen acuerdos y generalizan, simulando un ambiente científico en el aula, donde prima la actividad matemática sobre la repetición y la memoria. Cuando es necesario se recurre a la geometría euclidiana en busca de objetos y procedimientos que permitan realizar tareas en las que el álgebra tiene limitaciones, mostrando la permanente relación entre estas dos vertientes del conocimiento matemático. Se hace énfasis en las propiedades algebraicas de los números reales, primero en una construcción a partir de los números naturales y luego desde una perspectiva axiomática, sin profundizar en sus propiedades topológicas. Como epílogo se presentan varias formas de resolver ecuaciones algebraicas, algunas históricas, otras inventadas en clase, otras donde se aplican ideas simples y geniales de algunos matemáticos clásicos; con procedimientos aritméticos, algebraicos, de la geometría euclidiana, de la geometría analítica y hasta de la geometría proyectiva.es_Es
dc.formatpdfes_Es
dc.language.isospaes_Es
dc.publisherUniversidad Pedagógica Nacionales_Es
dc.subjectAlgebraes_Es
dc.subjectLógica Simbólicaes_Es
dc.titleActividades matemáticas para el desarrollo de procesos lógicos. Clasificar, medir e invertires_Es
dc.typeBookes_Es
dc.subject.keyword1. Algebra. 2. Lógica Simbólicaes_Es


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record