Show simple item record

dc.contributor.advisorPeña Morales, David
dc.contributor.authorFayad Sierra, Jorge
dc.date.accessioned2021-11-02T20:43:34Z
dc.date.available2021-11-02T20:43:34Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.12209/16555
dc.description.abstractLa estimación subjetiva de medidas antropométricas, como la estatura y la masa corporal a personas postradas en cama, suele tener inexactitudes en la valoración de tales magnitudes, lo que trae como consecuencia que en algunos casos halla errores en la formulación de fármacos o parametrización de ventiladores mecánicos; esto puede poner en riesgo la vida de los pacientes. Por lo anterior, aprovechando las bondades de la visión por computador, se plantea el proyecto Sistema De Valoración Antropométrica Para Estimar La Masa De Personas Postradas En Cama Basado En Visión Por Computador, con la intención de hacer una primera versión de un instrumento que estime estatura, envergadura, altura a la rodilla, perímetros de brazo, pantorrilla, cintura; así como la masa corporal del paciente. El sistema se desarrolló bajo un escenario controlado en términos de iluminación, un prototipo de estructura que sostiene un sensor Kinect V2 a una altura determinada, para capturar la imagen RGB y en profundidad de un paciente acostado y procesarlas, logrando estimar las medidas mencionadas en el párrafo anterior.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectAntropometríaspa
dc.subjectDecúbito supinospa
dc.subjectExactitudspa
dc.subjectErrorspa
dc.subjectKinectspa
dc.subjectPrecisiónspa
dc.subjectVisión por computadorspa
dc.titleSistema de valoración antropométrica para estimar la masa de personas postradas en cama basado en visión por computador.spa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.programLicenciatura en Electrónicaspa
dc.subject.keywordsAnthropometryspa
dc.subject.keywordsErrorspa
dc.subject.keywordsAccuracyspa
dc.subject.keywordsSupine decubitusspa
dc.subject.keywordsKinectspa
dc.subject.keywordsPrecisionspa
dc.subject.keywordsComputer visionspa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesantropometría | Definición | Diccionario de la lengua española | RAE - ASALE. (n.d.). Retrieved September 5, 2021, from https://dle.rae.es/antropometríaspa
dc.relation.referencesCannon, C. P. (2000). Thrombolysis medication errors: benefits of bolus thrombolytic agents. The American Journal of Cardiology, 85(8), 17–22. https://doi.org/10.1016/S0002-9149(00)00874-2spa
dc.relation.referencesCook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013a). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2spa
dc.relation.referencesCook, T. S., Couch, G., Couch, T. J., Kim, W., & Boonn, W. W. (2013b). Using the microsoft kinect for patient size estimation and radiation dose normalization: Proof of concept and initial validation. Journal of Digital Imaging, 26(4), 657–662. https://doi.org/10.1007/s10278-012-9567-2spa
dc.relation.referencesCubison, T. C. S. (2005). So much for percentage, but what about the weight? Emerg Med J, 22, 643–645. https://doi.org/10.1136/emj.2003.011304spa
dc.relation.referencesEspa, E. (2003). Diccionario Mosby de Medicina , Enfermería y Ciencias de la Salud , 6a ed . Códex del Laboratorio Clínico . Indicaciones e interpretación de los exámenes de laboratorio. 1(2), 149–150. https://books.google.com/books/about/Diccionario_Mosby.html?hl=es&id=coYUp744m5kCspa
dc.relation.referencesFitriyah, H., & Edhi Setyaw, G. (2018a). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688spa
dc.relation.referencesFitriyah, H., & Edhi Setyaw, G. (2018b). Automatic Estimation of Human Weight From Body Silhouette Using Multiple Linear Regression. Proceeding of the Electrical Engineering Computer Science and Informatics, 5(5). https://doi.org/10.11591/eecsi.v5i5.1688spa
dc.relation.referencesForschungsberichte in Robotik, W., Schilling Nüchter, K. A., & Wuerzburg Research Notes, U. (n.d.). Christian Pfitzner Band 18 Visual Human Body Weight Estimation with Focus on Clinical Applications. https://opus.bibliothek.uni-wuerzburg.despa
dc.relation.referencesGevers, T., & Smeulders, A. (2016). Foreword. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9914 LNCS, V. https://doi.org/10.1007/978-3-319-46493-0spa
dc.relation.referencesGonzalez, R. C., Woods, R. E., & Masters, B. R. (2009). Digital Image Processing, Third Edition. Journal of Biomedical Optics, 14(2), 029901. https://doi.org/10.1117/1.3115362spa
dc.relation.referencesJiang, M., & Guo, G. (2019a). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840spa
dc.relation.referencesJiang, M., & Guo, G. (2019b). Body Weight Analysis from Human Body Images. IEEE Transactions on Information Forensics and Security, 14(10), 2676–2688. https://doi.org/10.1109/TIFS.2019.2904840spa
dc.relation.referencesKhan, A. I., & Al-Habsi, S. (2020). Machine Learning in Computer Vision. Procedia Computer Science, 167. https://doi.org/10.1016/j.procs.2020.03.355spa
dc.relation.referencesKocabas, M., Athanasiou, N., & Black, M. J. (n.d.). VIBE: Video Inference for Human Body Pose and Shape Estimation. https://github.com/mkocabas/VIBEspa
dc.relation.referencesKocabas, M., Athanasiou, N., & Black, M. J. (2019). VIBE: Video inference for human body pose and shape estimation. ArXiv, 5253–5263.spa
dc.relation.referencesLabati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012a). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775spa
dc.relation.referencesLabati, R. D., Genovese, A., Piuri, V., & Scotti, F. (2012b). Two-view contactless fingerprint acquisition systems: A case study for clay artworks. BioMS 2012 - 2012 IEEE Workshop on Biometric Measurements and Systems for Security and Medical Applications, Proceedings, 9–16. https://doi.org/10.1109/BIOMS.2012.6345775spa
dc.relation.referencesLeibe, B., Matas, J., Sebe, N., & Welling, M. (Eds.). (2016). Computer Vision – ECCV 2016 (Vol. 9906). Springer International Publishing. https://doi.org/10.1007/978-3-319-46475-6spa
dc.relation.referencesLifshitz, I., Fetaya, E., & Ullman, S. (2016). Human pose estimation using deep consensus voting. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 9906 LNCS, 246–260. https://doi.org/10.1007/978-3-319-46475-6_16spa
dc.relation.referencesLin, C. B., Dong, Z., Kuan, W. K., & Huang, Y. F. (2021). A framework for fall detection based on openpose skeleton and lstm/gru models. Applied Sciences (Switzerland), 11(1), 1–20. https://doi.org/10.3390/app11010329spa
dc.relation.referencesLiu, Y., Sowmya, A., & Khamis, H. (2018a). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4), 1–22. https://doi.org/10.1371/journal.pone.0195600spa
dc.relation.referencesLu, J. M., & Wang, M. J. J. (2008). Automated anthropometric data collection using 3D whole body scanners. Expert Systems with Applications, 35(1–2), 407–414. https://doi.org/10.1016/j.eswa.2007.07.008spa
dc.relation.referencesMadrazo Pérez, M., & Torres Manrique, B. (n.d.). Gestión de los Servicios en Enfermeríaspa
dc.relation.referencesMinisterio de salud de Colombia. (2020, June 18). Se define valores de referencia a pagar por servicios UCI de covid-19. https://www.minsalud.gov.co/Paginas/Se-define-valores-de-referencia-a-pagar-por-servicios-UCI-de-covid-19.aspxspa
dc.relation.referencesPaar, A., Rüther, M., Bischof, H., Skrabal, F., Pirker, K., & Pichler, G. (2009). Human Body Volume Estimation in a Clinical Environment Combyn ECG Segmental Impedance Spectroscopy View project Glucose Monitoring View project Katrin Santner Human Body Volume Estimation in a Clinical Environment. https://www.researchgate.net/publication/228541158spa
dc.relation.referencesPfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015a). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593spa
dc.relation.referencesPfitzner, C., May, S., Merkl, C., Breuer, L., Kohrmann, M., Braun, J., Dirauf, F., & Nuchter, A. (2015b). Libra3D: Body weight estimation for emergency patients in clinical environments with a 3D structured light sensor. Proceedings - IEEE International Conference on Robotics and Automation, 2015-June(June), 2888–2893. https://doi.org/10.1109/ICRA.2015.7139593spa
dc.relation.referencesPfitzner, C., May, S., & Nüchter, A. (2016). Neural network-based visual body weight estimation for drug dosage finding. Medical Imaging 2016: Image Processing, 9784(March), 97841Z. https://doi.org/10.1117/12.2216042spa
dc.relation.referencesPfitzner, C., May, S., & Nüchter, A. (2017). Evaluation of Features from RGB-D Data for Human Body Weight Estimation. IFAC-PapersOnLine, 50(1), 10148–10153. https://doi.org/10.1016/j.ifacol.2017.08.1761spa
dc.relation.referencesPfitzner, C., May, S., & Nüchter, A. (2018a). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311spa
dc.relation.referencesPfitzner, C., May, S., & Nüchter, A. (2018b). Body weight estimation for dose-finding and health monitoring of lying, standing and walking patients based on RGB-D data. Sensors (Switzerland), 18(5). https://doi.org/10.3390/s18051311spa
dc.relation.referencesPirker, K., & Matthias, R. (2009). Human Body Volume Estimation in a Clinical Environment. May 2014.spa
dc.relation.referencesPROCESO DE PRESTACION DE LOS SERVICIOS SOCIALES ETAPA PARA PRESTAR SERVICIOS SOCIALES INTEGRALES PROCEDIMIENTO DEL SISTEMA DE VIGILANCIA NUTRICIONAL INSTRUCTIVO PARA LA TOMA Y REGISTRO DE MEDIDAS ANTROPOMETRICAS DE LOS ADULTOS Y LAS ADULTAS CON DISCAPACIDAD Y DIFICULTAD PARA ASUMIR LA BIPEDESTACIÓN. (n.d.). Retrieved September 1, 2021, from www.integracionsocial.gov.cospa
dc.relation.referencesResolución Número 914 De 2020. (n.d.). https://www.minsalud.gov.co/Normatividad_Nuevo/Resolución No. 914 de 2020.pdfspa
dc.relation.referencesS, M., & AM, K. (2005). How accurate is weight estimation in the emergency department? Emergency Medicine Australasia : EMA, 17(2), 113–116. https://doi.org/10.1111/J.1742-6723.2005.00701.Xspa
dc.relation.referencesSeo, D., Kang, E., Kim, Y. mi, Kim, S. Y., Oh, I. S., & Kim, M. G. (2020). SVM-based waist circumference estimation using Kinect. Computer Methods and Programs in Biomedicine, 191, 105418. https://doi.org/10.1016/j.cmpb.2020.105418spa
dc.relation.referencesServicios sanitarios de calidad. (n.d.). Retrieved September 4, 2021, from https://www.who.int/es/news-room/fact-sheets/detail/quality-health-servicesspa
dc.relation.referencesSpencer, B. F., Hoskere, V., & Narazaki, Y. (2019). Advances in Computer Vision-Based Civil Infrastructure Inspection and Monitoring. In Engineering (Vol. 5, Issue 2). https://doi.org/10.1016/j.eng.2018.11.030spa
dc.relation.referencesStancic, I., Cecić, M., & Supuk, T. (n.d.). Computer vision system for human anthropometric parameters estimation Computer vision in kinematic analysis of sports activities View project Smartbots-Autonomous Control of Mobile Robots Using Computer Vision Algorithms and Modern Neural Network Architec. https://www.researchgate.net/publication/228667014spa
dc.relation.referencesStančić, I., Musić, J., & Zanchi, V. (2013). Improved structured light 3D scanner with application to anthropometric parameter estimation. Measurement: Journal of the International Measurement Confederation, 46(1), 716–726. https://doi.org/10.1016/j.measurement.2012.09.010spa
dc.relation.referencesStancic, I., Supuk, T., & Cecic, M. (2009). Computer vision system for human anthropometric parameters estimation. WSEAS Transactions on Systems, 8(3), 430–439.spa
dc.relation.referencesUhm, T., Park, H., & Park, J. Il. (2015). Fully vision-based automatic human body measurement system for apparel application. Measurement: Journal of the International Measurement Confederation, 61, 169–179. https://doi.org/10.1016/j.measurement.2014.10.044spa
dc.relation.referencesVelardo, C., & Dugelay, J. L. (2010). Weight estimation from visual body appearance. IEEE 4th International Conference on Biometrics: Theory, Applications and Systems, BTAS 2010. https://doi.org/10.1109/BTAS.2010.5634540spa
dc.relation.referencesVelardo, C., & Dugelay, J. L. (2012). What can computer vision tell you about your weight? European Signal Processing Conference, November, 1980–1984.spa
dc.relation.referencesWang, L., Li, D., Zhu, Y., Tian, L., & Shan, Y. (n.d.). Dual Super-Resolution Learning for Semantic Segmentation.spa
dc.relation.referencesLiu, Y., Sowmya, A., & Khamis, H. (2018b). Single camera multi-view anthropometric measurement of human height and mid-upper arm circumference using linear regression. PLoS ONE, 13(4). https://doi.org/10.1371/journal.pone.0195600spa
dc.publisher.facultyFacultad de Ciencia y Tecnologíaspa
dc.type.localTesis/Trabajo de grado - Monografía - Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1feng
dc.description.degreenameLicenciado en Electrónicaspa
dc.description.degreelevelPregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.reponamereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.description.abstractenglishThe subjective estimation of anthropometric measures, such as height and body mass in bedridden people, tends to have inaccuracies in the assessment of such magnitudes, hence, in some cases there are errors in drug formulation or parameterization of mechanical ventilators; this can put patients' lives at risk. Therefore, taking the benefits of computer vision, the project Anthropometric Estimation System for body Mass estimation to Bedridden People Based on Computer Vision is proposed, as an attempt to make a first version of an instrument that estimates stature, wingspan, height to the knee, arm, calf, waist perimeters; as well as the patient's body mass. The system was developed under a controlled scenario in terms of lighting, using the prototype of a structure that supports a Kinect V2 sensor at a certain height, to capture the RGB and depth images of a lying patient and process them, managing to estimate all measurements mentioned in the previous paragraph.spa
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/