Show simple item record

dc.contributor.advisorSarmiento Vela, Luis Carlos
dc.contributor.authorClaros Collazos, Ana Silvia
dc.coverage.spatialBogotá, Colombiaspa
dc.date.accessioned2021-10-05T23:16:21Z
dc.date.available2021-10-05T23:16:21Z
dc.date.issued2021
dc.identifier.urihttp://hdl.handle.net/20.500.12209/16427
dc.description.abstractDurante los últimos años, el cerebro ha sido un tema de estudio importante debido a la interpretación de sus funciones, dentro de las que se encuentra la relación entre la conducta y la forma en la que aprende el individuo (Uva, 2017). Las funciones hemisféricas específicas del cerebro humano, han dado lugar a la distinción de los estilos cognitivos, permitiendo así identificar la forma particular en la que las personas procesan la información, actúan en un proceso de aprendizaje, características de su personalidad, su relación con el entorno, entre otras (Hayes y Allinson, 1998). Particularmente, el hemisferio izquierdo juega un papel fundamental en la conducta humana. Este tiene un predominio en la actividad lingüística, dentro de sus funciones está la elaboración del lenguaje proposicional y la emisión de palabras, debido a su relación directa con las áreas de Broca y de Wernicke, encargadas de la producción del lenguaje y la comprensión de las palabras (Portellano, 1992; Desrosiers, 1993). Adicional a lo anterior, en este hemisferio se lleva a cabo la producción interna de palabras sin la emisión de un sonido verbal, a lo que se le denomina imaginería del habla (Tamm, et al. 2020; Martin, et al. 2017) que junto con los estilos cognitivos en las dimensiones dependencia e independencia de campo, son el tema principal de esta investigación.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.subjectEstilos cognitivosspa
dc.subjectImaginería del hablaspa
dc.subjectSeñales electroencefalográficasspa
dc.subjectDependencia de campospa
dc.subjectIndependencia de campospa
dc.titleEstilos cognitivos y adquisición de señales de imaginería del habla por medio de señales EEG.spa
dc.publisher.programMaestría en Tecnologías de la Información aplicadas a la Educaciónspa
dc.subject.keywordsCognitive stylesspa
dc.subject.keywordsSpeech imageryspa
dc.subject.keywordsEEG signalsspa
dc.subject.keywordsField dependencyspa
dc.subject.keywordsField independencespa
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersion
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.rights.accessrightshttp://purl.org/coar/access_right/c_abf2
dc.relation.referencesAmezcua-Aguilar, T., & Amezcua-Aguilar, P. (2018). Contextos inclusivos: el reconocimiento de la lengua de signos como derecho de las personas con diversidad funcional.spa
dc.relation.referencesAshok Muzumdar, Ed., Powered Upper Limb Prostheses. OttawaCanada: Springer-Verlag Berlin Heidelberg, 2004.spa
dc.relation.referencesBakardjian, H., Tanaka, T., & Cichocki, A. (2010). Optimization of SSVEP brain responses with application to eight-command brain–computer interface. Neuroscience letters, 469(1), 34-38.spa
dc.relation.referencesBalaji, A., Haldar, A., Patil, K., Ruthvik, T. S., Valliappan, C. A., Jartarkar, M., & Baths, V. (2017, July). EEG-based classification of bilingual unspoken speech using ANN. In 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1022-1025). IEEE.spa
dc.relation.referencesBengio, Y., Goodfellow, I., & Courville, A. (2017). Deep learning (Vol. 1). Massachusetts, USA: MIT press.spa
dc.relation.referencesBera, T. K. Brain Computer Interfaces: Current Trends and Applications.spa
dc.relation.referencesCamacho, L. J. R., & Martínez, C. H. (2012). Escritura inicial y estilo cognitivo. Folios, (35), 49-65.spa
dc.relation.referencesChen, Q., Li, Y., & Yuan, X. (2021). A hybrid method for muscle artifact removal from EEG signals. Journal of Neuroscience Methods, 353, 109104.spa
dc.relation.referencesCooney, C., Korik, A., Folli, R., & Coyle, D. (2020). Evaluation of Hyperparameter Optimization in Machine and Deep Learning Methods for Decoding Imagined Speech EEG. Sensors, 20(16), 4629.spa
dc.relation.referencesCooney, C., Korik, A., Raffaella, F., & Coyle, D. (2019, September). Classification of imagined spoken word-pairs using convolutional neural networks. In The 8th Graz BCI Conference, 2019 (pp. 338-343). Verlag der Technischen Universitat Graz.spa
dc.relation.referencesCoretto, G. A. P., Gareis, I. E., & Rufiner, H. L. (2017, January). Open access database of EEG signals recorded during imagined speech. In 12th International Symposium on 62 Medical Information Processing and Analysis (Vol. 10160, p. 1016002). International Society for Optics and Photonics.spa
dc.relation.referencesDesrosiers-Sabbath, R. (1993). L’Enseignement et L’Hémisphère Cérebral Droit. Quebec: Ed. Presses de L’Université du Quebec.spa
dc.relation.referencesEdelman, B. J., Baxter, B., & He, B. (2015). EEG source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Transactions on Biomedical Engineering, 63(1), 4-14.spa
dc.relation.referencesEl Imrani, N. (2018). Una revisión de la neuroanatomía y neurofisiología del lenguaje. Revista de Neuro-Psiquiatría, 81(3), 196-202.spa
dc.relation.referencesFarina, D., Jiang, N., Rehbaum, H., Holobar, A., Graimann, B., Dietl, H., & Aszmann, O. C. (2014). The extraction of neural information from the surface EMG for the control of upper-limb prostheses: emerging avenues and challenges. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 22(4), 797-809.spa
dc.relation.referencesFujimaki, N., Takeuchi, F., Kobayashi, T., Kuriki, S., & Hasuo, S. (1994). Event-related potentials in silent speech. Brain topography, 6(4), 259-267.spa
dc.relation.referencesGarcía, M. A., & Galán, Y. I. J. (2009). Diagnóstico de los estilos de aprendizaje en los estudiantes: Estrategia docente para elevar la calidad educativa. CPU-e, Revista de Investigación educativa, (9), 1-21.spa
dc.relation.referencesGarcía-Salinas, J. S., Villaseñor-Pineda, L., Reyes-García, C. A., & Torres-García, A. A. (2019). Transfer learning in imagined speech EEG-based BCIs. Biomedical Signal Processing and Control, 50, 151-157.spa
dc.relation.referencesGhosh, R., Sinha, N., Biswas, S. K., & Phadikar, S. (2019). A modified grey wolf optimization based feature selection method from EEG for silent speech classification. Journal of Information and Optimization Sciences, 40(8), 1639-1652.spa
dc.relation.referencesGonzález, R., & Hornauer-Hughes, A. (2014). Cerebro y lenguaje. Revista Hospital Clínico Universidad de Chile, 25(1), 144-153.spa
dc.relation.referencesGonzález-Castañeda, E. F., Torres-García, A. A., Reyes-García, C. A., & Villaseñor-Pineda, L. (2017). Sonification and textification: Proposing methods for classifying unspoken words from EEG signals. Biomedical Signal Processing and Control, 37, 82-91.spa
dc.relation.referencesGraimann, B., Allison, B. Z., & Pfurtscheller, G. (Eds.). (2010). Brain-computer interfaces: Revolutionizing human-computer interaction. Springer Science & Business Media.spa
dc.relation.referencesHashim, N., Ali, A., & Mohd-Isa, W. N. (2017, November). Word-based classification of imagined speech using EEG. In International Conference on Computational Science and Technology (pp. 195-204). Springer, Singapore.spa
dc.relation.referencesHassanien, A. E., & Azar, A. A. (2015). Brain-computer interfaces. Switzerland: Springer.spa
dc.relation.referencesHeilmeyer, F. A., Schirrmeister, R. T., Fiederer, L. D., Völker, M., Behncke, J., & Ball, T. (2018). A framework for large-scale evaluation of deep learning for EEG. In IEEE International Conference on Systems, Man, and Cybernetics (SMC).spa
dc.relation.referencesHerrera, L. (2019). Procesamiento Cerebral del Lenguaje: Historia y evolución teórica. Fides et Ratio-Revista de Difusión cultural y científica de la Universidad La Salle en Bolivia, 17(17), 101-130.spa
dc.relation.referencesIto, N., Ono, N., Vincent, E., & Sagayama, S. (2010, March). Designing the Wiener post-filter for diffuse noise suppression using imaginary parts of inter-channel cross-spectra. In 2010 IEEE International Conference on Acoustics, Speech and Signal Processing (pp. 2818-2821). IEEE.spa
dc.relation.referencesJingwei, L., Yin, C., & Weidong, Z. (2015, July). Deep learning EEG response representation for brain computer interface. In 2015 34th Chinese Control Conference (CCC) (pp. 3518-3523). IEEE.spa
dc.relation.referencesKaongoen, N., & Jo, S. (2017). A novel hybrid auditory BCI paradigm combining ASSR and P300. Journal of neuroscience methods, 279, 44-51.spa
dc.relation.referencesLee, D. Y., Lee, M., & Lee, S. W. (2020, October). Classification of Imagined Speech Using Siamese Neural Network. In 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (pp. 2979-2984). IEEE.spa
dc.relation.referencesLi, G., Lee, C. H., Jung, J. J., Youn, Y. C., & Camacho, D. (2020). Deep learning for EEG data analytics: A survey. Concurrency and Computation: Practice and Experience, 32(18), e5199.spa
dc.relation.referencesLópez-Vargas, O., Hederich-Martínez, C., & Camargo-Uribe, Á. (2011). Estilo cognitivo y logro académico. Educación y educadores, 14(1).spa
dc.relation.referencesMartin, S., Brunner, P., Holdgraf, C., Heinze, H. J., Crone, N. E., Rieger, J., ... & Pasley, B. N. (2014). Decoding spectrotemporal features of overt and covert speech from the human cortex. Frontiers in neuroengineering, 7, 14.spa
dc.relation.referencesMartin, S., Brunner, P., Iturrate, I., Millán, J. D. R., Schalk, G., Knight, R. T., & Pasley, B. N. (2016). Word pair classification during imagined speech using direct brain recordings. Scientific reports, 6, 25803.spa
dc.relation.referencesMartin, S., Brunner, P., Iturrate, I., Millán, J. D. R., Schalk, G., Knight, R. T., & Pasley, B. N. (2017). Corrigendum: Word pair classification during imagined speech using direct brain recordings. Scientific reports, 7.spa
dc.relation.referencesMathew, A., Amudha, P., & Sivakumari, S. (2020, February). Deep Learning Techniques: An Overview. In International Conference on Advanced Machine Learning Technologies and Applications (pp. 599-608). Springer, Singapore.spa
dc.relation.referencesMoctezuma, L. A., & Molinas Cabrera, M. M. (2018). Towards an API for EEG-based imagined speech classification. In ITISE 2018-International Conference on Time Series and Forecasting.spa
dc.relation.referencesMoctezuma, L. A., Torres-García, A. A., Villaseñor-Pineda, L., & Carrillo, M. (2019). Subjects identification using EEG-recorded imagined speech. Expert Systems with Applications, 118, 201-208.spa
dc.relation.referencesMohammad, A., Siddiqui, F., & Alam, M. A. (2021, January). Feature Extraction from EEG Signals: A deep learning perspective. In 2021 11th International Conference on Cloud Computing, Data Science & Engineering (Confluence) (pp. 757-760). IEEE.spa
dc.relation.referencesMuñoz González, J. M., Gutiérrez-Arenas, M. P., & Serrano Rodríguez, R. (2012). Los hemisferios cerebrales: dos estilos de pensar, dos modos de enseñar y aprender.spa
dc.relation.referencesNguyen, C. H., Karavas, G. K., & Artemiadis, P. (2017). Inferring imagined speech using EEG signals: a new approach using Riemannian manifold features. Journal of neural engineering, 15(1), 016002.spa
dc.relation.referencesPanachakel, J. T., Ramakrishnan, A. G., & Ananthapadmanabha, T. V. (2020). A novel deep learning architecture for decoding imagined speech from eeg. arXiv preprint arXiv:2003.09374.spa
dc.relation.referencesPortellano Pérez, J. (1992). Introducción al estudio de las asimetrías cerebrales. Madrid: Colección Neurociencia Ciencias de la Educación Preescolar y Especiaspa
dc.relation.referencesQureshi, M. N. I., Min, B., Park, H. J., Cho, D., Choi, W., & Lee, B. (2017). Multiclass classification of word imagination speech with hybrid connectivity features. IEEE Transactions on Biomedical Engineering, 65(10), 2168-2177.spa
dc.relation.referencesRoy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T. H., & Faubert, J. (2019). Deep learning-based electroencephalography analysis: a systematic review. Journal of neural engineering, 16(5), 051001.spa
dc.relation.referencesSalama Salama, M., ElSherif, L., Lashin, H., & Gamal, T. (2014). Recognition of unspoken words using electrode electroencephalograhic signals. In The Sixth International Conference on Advanced Cognitive Technologies and Applications (pp. 51-5)spa
dc.relation.referencesSarmiento Vela, L. C. (2019). Interfaces cerebro-computador para el reconocimiento automático del habla silenciosa. Universidad Pedagógica Nacional.spa
dc.relation.referencesStern, J. M. (2005). Atlas of EEG patterns. Lippincott Williams & Wilkins.spa
dc.relation.referencesTamm, M. O., Muhammad, Y., & Muhammad, N. (2020). Classification of Vowels from Imagined Speech with Convolutional Neural Networks. Computers, 9(2), 46.spa
dc.relation.referencesTong, S., & Thakor, N. V. (2009). Quantitative EEG analysis methods and clinical applications. Artech House.spa
dc.relation.referencesTorres-García, A. A., Reyes-García, C. A., Villaseñor-Pineda, L., & Ramírez-Cortés, J. M. (2013). Electroencephalographic Signals Analysis for Imagined Speech Classification. Revista Mexicana de Ingeniería Biomédica, 34(1), 23-39. Uva,spa
dc.relation.referencesUva, A. (2017). Neurociencias en el ámbito educativo. Estilos cognitivos y estrategias de aprendizaje. Revista Internacional Magisterio, 68.spa
dc.relation.referencesVillamizar, S. I., Sarmiento, L. C., López, O., Caballero, J., & Bacca, J. (2019, November). EEG Vowel Silent Speech Signal Discrimination Based on APIT-EMD and SVD. In International Conference on Advanced Engineering Theory and Applications (pp. 74-83). Springer, Cham.spa
dc.relation.referencesWang, L., Zhang, X., Zhong, X., & Zhang, Y. (2013). Analysis and classification of speech imagery EEG for BCI. Biomedical signal processing and control, 8(6), 901-908.spa
dc.publisher.facultyFacultad de Ciencia y Tecnologíaspa
dc.type.localTesis/Trabajo de grado - Monografía - Maestríaspa
dc.type.coarhttp://purl.org/coar/resource_type/c_bdcceng
dc.description.degreenameMagister en Tecnologías de la Información aplicadas a la Educaciónspa
dc.description.degreelevelMaestríaspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.reponamereponame: Repositorio Institucional UPNspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/