Show simple item record

dc.contributor.advisorLeongómez Peña, Juan Davidspa
dc.contributor.authorMoreno Buitrago, Natalia Elízabethspa
dc.contributor.authorPérez Ariza, Juan Felipespa
dc.date.accessioned2019-09-23T15:56:31Z
dc.date.available2019-09-23T15:56:31Z
dc.date.issued2019
dc.identifier.urihttp://hdl.handle.net/20.500.12209/10443
dc.description.abstractLos maestros de música generalmente afirman que, según su experiencia, la música beneficia de diversas maneras a los estudiantes. En esta investigación evaluamos la afirmación que apunta a que la música lleva a los estudiantes a trabajar mejor en equipo. 15 grupos de 5 personas, cada uno conformado por hombres y mujeres desconocidos entre sí, y de edades entre los 18 y 28 años de diferentes universidades de Bogotá, fueron asignados a tres condiciones: rítmica, ritmomelódica y control. Cada grupo debía componer o improvisar algo que los representara grupalmente: En la condición rítmica, los participantes debían componer o improvisar un ritmo entre los cinco e interpretarlo; en la condición ritmomelódica, los participantes debían componer una canción o cantar alguna existente que los representara; y finalmente, en el control, los participantes debían crear una frase o un slogan que no tuviera ningún tipo de rasgo musical. Acto seguido, cada grupo debía trabajar en equipo para completar dos actividades. En primer lugar, debían desenredar cinco cuerdas anudadas de manera estándar siguiendo unas reglas específicas. Luego de desenredarlas, debían armar un rompecabezas entre los cinco, para lo cual, dos integrantes del grupo debían vendarse los ojos y manipular las fichas, mientras que los tres restantes daban las instrucciones en un orden específico. El tiempo de ejecución era cronometrado desde que empezaban a desenredar las cuerdas hasta que ponían la última ficha del rompecabezas. Los datos fueron analizados realizando un análisis de covarianza, comparando el promedio del tiempo de ejecución de cada condición y controlando tres covariables: I) el promedio grupal del resultado de la prueba de musicalidad y el promedio grupal de los índices psicométricos de II) dominancia y III) prestigio. Los resultados no permiten inferir con suficiente certeza una relación entre las condiciones experimentales y el tiempo de ejecución de las pruebas de trabajo grupal (p = 0.797). Las implicaciones de estos resultados fueron analizados a la luz de una revisión bibliográfica en la que indagamos sobre las diferentes hipótesis que le aportan a la música un valor evolutivo.spa
dc.formatPDFspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospa
dc.publisherUniversidad Pedagógica Nacionalspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.sourcereponame:Repositorio Institucional de la Universidad Pedagógica Nacionalspa
dc.sourceinstname:Universidad Pedagógica Nacionalspa
dc.subjectMúsica y sociedadspa
dc.subjectMusicalidad,spa
dc.subjectCohesión socialspa
dc.subjectTrabajo en equipospa
dc.subjectNiños - Músicaspa
dc.subjectEvoluciónspa
dc.subjectPedagogía y cogniciónspa
dc.titleMusicalidad y cohesión social: una aproximación experimental y bibliográfica desde el trabajo en equipo.spa
dc.typeinfo:eu-repo/semantics/bachelorThesisspa
dc.publisher.programLicenciatura en Músicaspa
dc.rights.accessAcceso abiertospa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccess
dc.relation.referencesAgustus, J. L., Mahoney, C. J., Downey, L. E., Omar, R., Cohen, M., White, M. J., … Warren, J. D. (2015). Functional MRI of music emotion processing in frontotemporal dementia. Annals of the New York Academy of Sciences, 1337(1), 232–240. https://doi.org/10.1111/nyas.12620spa
dc.relation.referencesAiello, L. C., & Dunbar, R. I. M. (1993). Neocortex Size, Group Size, and the Evolution of Language. Current Anthropology, 34(2), 184–193. https://doi.org/10.2307/2743982spa
dc.relation.referencesAlbert, M. L., Sparks, R. W., & Helm, N. A. (1973). Melodic intonation therapy for aphasia. Archives of Neurology, 29(2), 130–131.spa
dc.relation.referencesAltenmüller, E., & Furuya, S. (2017). Apollos Gift and Curse: Making Music as a model for Adaptive and Maladaptive Plasticity. E-Neuroforum, 23(2). https://doi.org/10.1515/nf-2016-A054spa
dc.relation.referencesAmaducci, L., Grassi, E., & Boller, F. (2002). Maurice Ravel and right-hemisphere musical creativity: Influence of disease on his last musical works? European Journal of Neurology, 9(1), 75–82. https://doi.org/10.1046/j.1468-1331.2002.00351.xspa
dc.relation.referencesAslan, U. (2017). Negotiating biological and cultural features of music: Towards the field of biomusicology. Rupkatha Journal on Interdisciplinary Studies in Humanities, 9(1), 2–10. https://doi.org/10.21659/rupkatha.v9n1.02spa
dc.relation.referencesAtzil, S., Hendler, T., & Feldman, R. (2011). Specifying the neurobiological basis of human attachment: Brain, hormones, and behavior in synchronous and intrusive mothers. Neuropsychopharmacology, 36(13), 2603–2615. https://doi.org/10.1038/npp.2011.172spa
dc.relation.referencesAu, W. W. L., Pack, A. A., Lammers, M. O., Herman, L. M., Deakos, M. H., & Andrews, K. (2006). Acoustic properties of humpback whale songs. The Journal of the Acoustical Society of America, 120(2), 1103–1110. https://doi.org/10.1121/1.2211547spa
dc.relation.referencesAxelrod, R., & Dion, D. (1988). The further evolution of cooperation. Science, 242(4884), 1385–1390. https://doi.org/10.1126/science.242.4884.1385spa
dc.relation.referencesBannan, N. (2017). Darwin, music and evolution: New insights from family correspondence on The Descent of Man. Musicae Scientiae, 21(1), 3–25. https://doi.org/10.1177/1029864916631794spa
dc.relation.referencesBaumgartner, T., Lutz, K., Schmidt, C. F., & Jäncke, L. (2006). The emotional power of music: How music enhances the feeling of affective pictures. Brain Research, 1075(1), 151–164. https://doi.org/10.1016/j.brainres.2005.12.065spa
dc.relation.referencesBehague, G., & Seeger, A. (2006). Why Suya Sing. A Musical Anthropology of an Amazonian People. Latin American Music Review / Revista de Música Latinoamericana, 9(2), 260. https://doi.org/10.2307/780298spa
dc.relation.referencesBellinger, D., Altenmüller, E., & Volkmann, J. (2017). Perception of Time in Music in Patients with Parkinson’s Disease–The Processing of Musical Syntax Compensates for Rhythmic Deficits. Frontiers in Neuroscience, 11, 68. https://doi.org/10.3389/fnins.2017.00068spa
dc.relation.referencesBengtsson, S. L., Ullén, F., Henrik Ehrsson, H., Hashimoto, T., Kito, T., Naito, E., … Sadato, N. (2009). Listening to rhythms activates motor and premotor cortices. Cortex, 45(1), 62–71. https://doi.org/10.1016/j.cortex.2008.07.002spa
dc.relation.referencesBenton, A. L. (1977). The Amusias. Music and the Brain, 378–397. https://doi.org/10.1016/B978-0-433-06703-0.50029-2spa
dc.relation.referencesBerwick, R. C., Beckers, G. J. L., Okanoya, K., & Bolhuis, J. J. (2012). A bird’s eye view of human language evolution. Frontiers in Evolutionary Neuroscience, 4, 5. https://doi.org/10.3389/fnevo.2012.00005spa
dc.relation.referencesBlood, A. J., & Zatorre, R. J. (2001). Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proceedings of the National Academy of Sciences, 98(20), 11818–11823.spa
dc.relation.referencesBoughman, J. W., & Moss, C. F. (2003). Social Sounds: Vocal Learning and Development of Mammal and Bird Calls. In Acoustic Communication (pp. 138–224). https://doi.org/10.1007/0-387-22762-8_4spa
dc.relation.referencesBrainsky, Simón and Guzmán Cervantes, Eugenia and Matallana, Diana and Montaña, Clemencia and Montañés, Patricia and Morales, Hernando and Moreno Cardozo, Belén del Rocío and Morillo, Anibal and Pardo, Rodrigo and Rojas, Alejandro and Ruiz, E. (2010). Cerebro y música. In Cerebro, Arte y Creatividad. https://doi.org/10.1196spa
dc.relation.referencesBrandily, M. (2004). Dire ou chanter? L’exemple du Tibesti (Tchad). L’Homme. Revue Française d’anthropologie, (171–172), 303–311. https://doi.org/10.4000/lhomme.24924spa
dc.relation.referencesBrandler, S., & Rammsayer, T. H. (2003). Differences in mental abilities between musicians and non-musicians. Psychology of Music, 31(2), 123–138. https://doi.org/10.1177/0305735603031002290spa
dc.relation.referencesBrown, S., & Jordania, J. (2013). Universals in the world’s musics. Psychology of Music, 41(2), 229–248. https://doi.org/10.1177/0305735611425896spa
dc.relation.referencesBrown, S., Martinez, M. J., & Parsons, L. M. (2004). Passive music listening spontaneously engages limbic and paralimbic systems. Neuroreport, 15(13), 2033– 2037.spa
dc.relation.referencesBrufal A, J. D. (2013). Los principales métodos activos de educación musical en primaria. In Arseduca. Retrieved from https://dialnet.unirioja.es/servlet/articulo?codigo=4339750spa
dc.relation.referencesBrust, J. C. (2001). Music and the neurologist. A historical perspective. Annals of the New York Academy of Sciences, 930, 143–152.spa
dc.relation.referencesBuckner, M., & Margaret. (2004). Ce que nous dit la cloche manjako. L’Homme. Revue Française d’anthropologie, (171–172), 219–230. https://doi.org/10.4000/lhomme.24896spa
dc.relation.referencesCacioppo, J. T., Cacioppo, S., Capitanio, J. P., & Cole, S. W. (2015). The Neuroendocrinology of Social Isolation. In Annual Review of Psychology (Vol. 66). https://doi.org/10.1146/annurev-psych-010814-015240spa
dc.relation.referencesCallan, D. E., Tsytsarev, V., Hanakawa, T., Callan, A. M., Katsuhara, M., Fukuyama, H., & Turner, R. (2006). Song and speech: Brain regions involved with perception and covert production. NeuroImage, 31(3), 1327–1342. https://doi.org/10.1016/j.neuroimage.2006.01.036spa
dc.relation.referencesCarson, S. H., Peterson, J. B., & Higgins, D. M. (2005). Reliability, validity, and factor structure of the creative achievement questionnaire. Creativity Research Journal, 17(1), 37–50. https://doi.org/10.1207/s15326934crj1701_4spa
dc.relation.referencesCasudan, E. (1995). Hormones, sex, and status in women. Hormones and Behavior, 29(3), 354–366. https://doi.org/10.1006/hbeh.1995.1025spa
dc.relation.referencesChen, J. L., Penhune, V. B., & Zatorre, R. J. (2008). Listening to Musical Rhythms Recruits Motor Regions of the Brain. Cerebral Cortex, 18(12), 2844–2854. https://doi.org/10.1093/cercor/bhn042spa
dc.relation.referencesChen, J. L., Zatorre, R. J., & Penhune, V. B. (2006). Interactions between auditory and dorsal premotor cortex during synchronization to musical rhythms. NeuroImage, 32(4), 1771–1781. https://doi.org/10.1016/j.neuroimage.2006.04.207spa
dc.relation.referencesCheng, J. T., Tracy, J. L., & Henrich, J. (2010). Pride, personality, and the evolutionary foundations of human social status. Evolution and Human Behavior, 31(5), 334– 347. https://doi.org/10.1016/j.evolhumbehav.2010.02.004spa
dc.relation.referencesChobert, J., & Besson, M. (2013). Musical expertise and second language learning. Brain Sciences, Vol. 3, pp. 923–940. https://doi.org/10.3390/brainsci3020923spa
dc.relation.referencesCirelli, L. K., Einarson, K. M., & Trainor, L. J. (2014). Interpersonal synchrony increases prosocial behavior in infants. Developmental Science, 17(6), 1003–1011. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25513669spa
dc.relation.referencesClark, C. W., & Clapham, P. J. (2004). Acoustic monitoring on a humpback whale (Megaptera novaeangliae) feeding ground shows continual singing into late spring. Proceedings of the Royal Society B: Biological Sciences, 271(1543), 1051–1057. https://doi.org/10.1098/rspb.2004.2699spa
dc.relation.referencesClarke, E., DeNora, T., & Vuoskoski, J. (2015). Music, empathy and cultural understanding. Physics of Life Reviews, 15, 61–88. https://doi.org/10.1016/j.plrev.2015.09.001spa
dc.relation.referencesClayton, M. (2012). What is Entrainment? Definition and applications in musical research. Empirical Musicology Review, 7(1–2), 49–56. https://doi.org/10.18061/1811/52979spa
dc.relation.referencesClayton, M., Sager, R., & Udo, W. (2005). In time with the music : the concept of entrainment and its signicance for ethnomusicology. In European meetings in ethnomusicology (Vol. 11, pp. 1–82). Retrieved from http://dro.dur.ac.uk/8713/1/8713.pdfspa
dc.relation.referencesConard, N. J., Malina, M., & Münzel, S. C. (2009). New flutes document the earliest musical tradition in southwestern Germany. Nature, 460(7256), 737–740. https://doi.org/10.1038/nature08169spa
dc.relation.referencesČrnčec, R., Wilson, S. J., & Prior, M. (2006). The cognitive and academic benefits of music to children: Facts and fiction. Educational Psychology, 26(4), 579–594. https://doi.org/10.1080/01443410500342542spa
dc.relation.referencesCross, I. (2001). Music, cognition, culture, and evolution. Annals of the New York Academy of Sciences, 930, 28–42.spa
dc.relation.referencesCross, I. (2016). The Nature of Music and Its Evolution The Theory of Evolution in 85 Musicological. In S. Hallam, I. Cross, & M. Thaut (Eds.), Oxford Handbooks Online. (pp. 1–20). https://doi.org/10.1093/oxfordhb/9780198722946.013.5spa
dc.relation.referencesCross, I., & Morley, I. (2008). The evolution of music: theories, definitions and the nature of the evidence. In Communicative musicality: Exploring the basis of human companionship (pp. 61–82). Retrieved from http://www.mus.cam.ac.uk/~ic108/PDF/CM_CM08.pdfspa
dc.relation.referencesCrowley, D. J., & Seeger, A. (2006). Nature and Society in Central Brazil: The Suya Indians of Mato Grosso. Ethnomusicology, 27(3), 539. https://doi.org/10.2307/850658spa
dc.relation.referencesDalla Bella, S. (2016). Music and Brain Plasticity. In S. Hallam, I. Cross, & M. Thaut (Eds.), The Oxford Handbook of Music Psychology (2nd ed., pp. 325–342). https://doi.org/10.1093/oxfordhb/9780198722946.013.23spa
dc.relation.referencesDalla Bella, S., Deutsch, D., Giguère, J.-F., Peretz, I., & Deutsch, D. (2007). Singing proficiency in the general population. The Journal of the Acoustical Society of America, 121(2), 1182–1189. https://doi.org/10.1121/1.2427111spa
dc.relation.referencesDarwin, C. (1871). The descent of man, and Selection in relation to sex, Vol 1. https://doi.org/10.1037/12293-000spa
dc.relation.referencesDelsing, M. J. M. H., Ter Bogt, T. F. M., Engels, R. C. M. E., & Meeus, W. H. J. (2008). Adolescents’ music preferences and personality characteristics. European Journal of Personality, 22(2), 109–130. https://doi.org/10.1002/per.665spa
dc.relation.referencesDepue, R. A., & Morrone-Strupinsky, J. V. (2005). A neurobehavioral model of affiliative bonding: Implications for conceptualizing a human trait of affiliation. Behavioral and Brain Sciences, Vol. 28, pp. 313–350. https://doi.org/10.1017/S0140525X05000063spa
dc.relation.referencesDi Pietro, M., Laganaro, M., Leemann, B., & Schnider, A. (2004). Receptive amusia: temporal auditory processing deficit in a professional musician following a left temporo-parietal lesion. Neuropsychologia, 42(7), 868–877.spa
dc.relation.referencesDissanayake, E. (2009). Root, leaf, blossom, or bole: Concerning the origin and adaptive function of music. In S. Malloch & C. Trevarten (Eds.), Communicative musicality: Exploring the basis of human companionship (pp. 17–30). Oxford University Press.spa
dc.relation.referencesDouglas, K. M., & Bilkey, D. K. (2007). Amusia is associated with deficits in spatial processing. Nature Neuroscience, 10(7), 915–921. https://doi.org/10.1038/nn1925spa
dc.relation.referencesDrake, C., & El Heni, J. Ben. (2003). Synchronizing with Music: Intercultural Differences. Annals of the New York Academy of Sciences, 999(1), 429–437. https://doi.org/10.1196/annals.1284.053spa
dc.relation.referencesDufour, V., Pasquaretta, C., Gayet, P., & Sterck, E. H. M. (2017). The extraordinary nature of Barney’s drumming: A complementary study of ordinary noise making in chimpanzees. Frontiers in Neuroscience, 11, 2. https://doi.org/10.3389/fnins.2017.00002spa
dc.relation.referencesDunbar, R. I. M. (1991). Functional Significance of Social Grooming in Primates. Folia Primatologica, 57(3), 121–131. https://doi.org/10.1159/000156574spa
dc.relation.referencesDunbar, R. I. M. (2012). On the Evolutionary Function of Song and Dance. In Music, Language, and Human Evolution (pp. 201–214). https://doi.org/10.1093/acprof:osobl/9780199227341.003.0008spa
dc.relation.referencesDunbar, R. I. M. (2017). Group size, vocal grooming and the origins of language. Psychonomic Bulletin and Review, 24(1), 209–212. https://doi.org/10.3758/s13423- 016-1122-6spa
dc.relation.referencesDunbar, R. I. M., Kaskatis, K., MacDonald, I., & Barra, V. (2012). Performance of music elevates pain threshold and positive affect: Implications for the evolutionary function of music. Evolutionary Psychology, 10(4), 688–702. https://doi.org/10.1177/147470491201000403spa
dc.relation.referencesFalk, D. (2008). Prelinguistic evolution in hominin mothers and babies: For cryin’ out loud! Behavioral and Brain Sciences, 27(4), 461–462. https://doi.org/10.1017/s0140525x04250105spa
dc.relation.referencesFalk, J. L. (1958). The grooming behavior of the chimpanzee as a reinforcer. Journal of the Experimental Analysis of Behavior, 1(1), 83–85. https://doi.org/10.1901/jeab.1958.1-83spa
dc.relation.referencesFancourt, D., & Perkins, R. (2017). Associations between singing to babies and symptoms of postnatal depression, wellbeing, self-esteem and mother-infant bond. Public Health, 145, 149–152. https://doi.org/10.1016/j.puhe.2017.01.016spa
dc.relation.referencesFeldman, R. (2012a). Bio-behavioral Synchrony: A Model for Integrating Biological and Microsocial Behavioral Processes in the Study of Parenting. Parenting, 12(2–3), 154–164. https://doi.org/10.1080/15295192.2012.683342spa
dc.relation.referencesFeldman, R. (2012b). Oxytocin and social affiliation in humans. Hormones and Behavior, Vol. 61, pp. 380–391. https://doi.org/10.1016/j.yhbeh.2012.01.008spa
dc.relation.referencesFeldman, R. (2016). The neurobiology of mammalian parenting and the biosocial context of human caregiving. Hormones and Behavior, 77, 3–17. https://doi.org/10.1016/j.yhbeh.2015.10.001spa
dc.relation.referencesFeldman, R. (2017). The Neurobiology of Human Attachments. Trends in Cognitive Sciences, Vol. 21, pp. 80–99. https://doi.org/10.1016/j.tics.2016.11.007spa
dc.relation.referencesFernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infanspa
dc.relation.referencesFernald, A., & Kuhl, P. (1987). Acoustic Determinants of Infant Preference for Motherese Speech. In Infant behavior and Development (Vol. 10).spa
dc.relation.referencesField, A., & Hole, G. (2002). How to design and report experiments. Sage.spa
dc.relation.referencesFitch, W. T. (2005). The evolution of music in comparative perspective. Annals of the New York Academy of Sciences, 1060(1), 29–49. https://doi.org/10.1196/annals.1360.004spa
dc.relation.referencesFitch, W. T. (2006). The biology and evolution of music: A comparative perspective. Cognition, 100(1), 173–215. https://doi.org/10.1016/j.cognition.2005.11.009spa
dc.relation.referencesFitch, W. T. (2013). Rhythmic cognition in humans and animals: distinguishing meter and pulse perception. Frontiers in Systems Neuroscience, 7, 68. https://doi.org/10.3389/fnsys.2013.00068spa
dc.relation.referencesFitch, W. T. (2015). Four principles of bio-musicology. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664), 20140091. https://doi.org/10.1098/rstb.2014.0091spa
dc.relation.referencesFodor, J. A. (1983). The modularity of mind : an essay on faculty psychology. MIT Pressspa
dc.relation.referencesFodor, J. A. (1985). Précis of The Modularity of Mind. Behavioral and Brain Sciences, 8(1), 1–5. https://doi.org/10.1017/S0140525X0001921Xspa
dc.relation.referencesFormann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter sprachfreier Intelligenztest. Weinheim: Beltz Test,.spa
dc.relation.referencesFormann, W., & Piswanger, J. (1979). Wiener Matrizen Test. Ein Rasch-skalieter sprachfreier Intelligenztest. Weinheim: Beltz Test,.spa
dc.relation.referencesFoxton, J. M., Nandy, R. K., & Griffiths, T. D. (2006). Rhythm deficits in ‘tone deafness.’ Brain and Cognition, 62(1), 24–29. https://doi.org/10.1016/j.bandc.2006.03.005spa
dc.relation.referencesFriederici, A. D. (2011). The Brain Basis of Language Processing: From Structure to Function. Physiological Reviews, 91(4), 1357–1392. https://doi.org/10.1152/physrev.00006.2011spa
dc.relation.referencesFritz, T., Jentschke, S., Gosselin, N., Sammler, D., Peretz, I., Turner, R., … Koelsch, S. (2009). Universal Recognition of Three Basic Emotions in Music. Current Biology, 19(7), 573–576. https://doi.org/10.1016/j.cub.2009.02.058spa
dc.relation.referencesFrost, C., Sauter, D. A., Gordon, E., Omar, R., Hailstone, J. C., Bartlett, J. W., … Scott, S. K. (2011). The structural neuroanatomy of music emotion recognition: Evidence from frontotemporal lobar degeneration. NeuroImage, 56(3), 1814–1821. https://doi.org/10.1016/j.neuroimage.2011.03.002spa
dc.relation.referencesFukui, H. (2001). Music and Testosterone. Annals of the New York Academy of Sciences, 930(1), 448–451. https://doi.org/10.1111/j.1749-6632.2001.tb05767.xspa
dc.relation.referencesFundation Sing up. (2011). Synthesis Report: Sing Up 2007-2011 Programme Evaluation. Retrieved from www.singup.orgspa
dc.relation.referencesGarcía-Casares, N., Berthier Torres, M. L., Froudist Walsh, S., & González-Santos, P. (2013). Modelo de cognición musical y amusia. Neurologia, 28(3), 179–186. https://doi.org/10.1016/j.nrl.2011.04.010spa
dc.relation.referencesGarland, E. C., Goldizen, A. W., Rekdahl, M. L., Constantine, R., Garrigue, C., Hauser, N. D., … Noad, M. J. (2011). Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Current Biology, 21(8), 687–691. https://doi.org/10.1016/j.cub.2011.03.019spa
dc.relation.referencesGaser, C., & Schlaug, G. (2003). Brain structures differ between musicians and nonmusicians. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 23(27), 9240–9245. https://doi.org/10.1523/JNEUROSCI.23-27- 09240.2003spa
dc.relation.referencesGingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2015). Defining the biological bases of individual differences in musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0092spa
dc.relation.referencesGodwin, J., & Blacking, J. (2006). How Musical Is Man? Notes, 31(1), 41. https://doi.org/10.2307/895922spa
dc.relation.referencesGosselin, N. (2005). Impaired recognition of scary music following unilateral temporal lobe excision. Brain, 128(3), 628–640. https://doi.org/10.1093/brain/awh420spa
dc.relation.referencesGosselin, N. (2006). Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain, 129(10), 2585–2592. https://doi.org/10.1093/brain/awl240spa
dc.relation.referencesGosselin, N., Paquette, S., & Peretz, I. (2015). Sensitivity to musical emotions in congenital amusia. Cortex, 71, 171–182. https://doi.org/10.1016/j.cortex.2015.06.022spa
dc.relation.referencesGosselin, N., Peretz, I., Johnsen, E., & Adolphs, R. (2007). Amygdala damage impairs emotion recognition from music. Neuropsychologia, 45(2), 236–244. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2006.07.012spa
dc.relation.referencesGrahn, J. A. (2012). Neural Mechanisms of Rhythm Perception: Current Findings and Future Perspectives. Topics in Cognitive Science, 4(4), 585–606. https://doi.org/10.1111/j.1756-8765.2012.01213.xspa
dc.relation.referencesGrahn, J. A., & Rowe, J. B. (2013). Finding and Feeling the Musical Beat: Striatal Dissociations between Detection and Prediction of Regularity. Cerebral Cortex, 23(4), 913–921. https://doi.org/10.1093/cercor/bhs083spa
dc.relation.referencesGrebosz-Haring, K., & Thun-Hohenstein, L. (2018). Effects of group singing versus group music listening on hospitalized children and adolescents with mental disorders: A pilot study. Heliyon, 4(12), e01014. https://doi.org/10.1016/j.heliyon.2018.e01014spa
dc.relation.referencesGrube, M., & Griffiths, T. D. (2009). Metricality-enhanced temporal encoding and the subjective perception of rhythmic sequences. Cortex, 45(1), 72–79. https://doi.org/10.1016/j.cortex.2008.01.006spa
dc.relation.referencesHaesler, S. (2004). FoxP2 Expression in Avian Vocal Learners and Non-Learners. Journal of Neuroscience, 24(13), 3164–3175. https://doi.org/10.1523/JNEUROSCI.4369-03.2004spa
dc.relation.referencesHallam, S. (2010). The power of music: Its impact on the intellectual, social and personal development of children and young people. International Journal of Music Education, Vol. 28, pp. 269–289. https://doi.org/10.1177/0255761410370658spa
dc.relation.referencesHansen, M., Wallentin, M., & Vuust, P. (2013). Working memory and musical 91 competence of musicians and non-musicians. Psychology of Music, 41(6), 779– 793. https://doi.org/10.1177/0305735612452186spa
dc.relation.referencesHasegawa, A., Okanoya, K., Hasegawa, T., & Seki, Y. (2011). Rhythmic synchronization tapping to an audio-visual metronome in budgerigars. Scientific Reports, 1, 120. https://doi.org/10.1038/srep00120spa
dc.relation.referencesHattori, Y., Tomonaga, M., & Matsuzawa, T. (2013). Spontaneous synchronized tapping to an auditory rhythm in a chimpanzee. Scientific Reports, 3. https://doi.org/10.1038/srep01566spa
dc.relation.referencesHerdener, M., Esposito, F., di Salle, F., Boller, C., Hilti, C. C., Habermeyer, B., … Cattapan-Ludewig, K. (2010). Musical Training Induces Functional Plasticity in Human Hippocampus. Journal of Neuroscience, 30(4), 1377–1384. https://doi.org/10.1523/JNEUROSCI.4513-09.2010spa
dc.relation.referencesHerholz, S. C., & Zatorre, R. J. (2012). Musical Training as a Framework for Brain Plasticity: Behavior, Function, and Structure. Neuron, 76(3), 486–502. https://doi.org/10.1016/j.neuron.2012.10.011spa
dc.relation.referencesHilliard, R. E. (2007). The effects of orff-based music therapy and social work groups on childhood grief symptoms and behaviors. Journal of Music Therapy, 44(2), 123– 138. Retrieved from http://jmt.oxfordjournals.org/spa
dc.relation.referencesHoelzel, A. R. (2009). Marine mammal biology : an evolutionary approach (A. R. Hoelzel, Ed.). Blackwell Science.spa
dc.relation.referencesHoeschele, M., Merchant, H., Kikuchi, Y., Hattori, Y., & ten Cate, C. (2015). Searching for the origins of musicality across species. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 370, pp. 20140094–20140094. https://doi.org/10.1098/rstb.2014.0094spa
dc.relation.referencesHoning, H. (2012). Without it no music: Beat induction as a fundamental musical trait. Annals of the New York Academy of Sciences, 1252(1), 85–91.spa
dc.relation.referencesHoning, Henkjan. (2018). The origins of musicality. ILLC (FGw), Language and Computation, Brain and Cognition, ILLC (FNWI/FGw).spa
dc.relation.referencesHoning, Henkjan, ten Cate, C., Peretz, I., & Trehub, S. E. (2015). Without it no music: Cognition, biology and evolution of musicality. Philosophical Transactions of the Royal Society B: Biological Sciences, 370(1664). https://doi.org/10.1098/rstb.2014.0088spa
dc.relation.referencesHopkins, M. T. (2015). Collaborative composing in high school string chamber music ensembles. Journal of Research in Music Education, 62(4), 405–424. https://doi.org/10.1177/0022429414555135spa
dc.relation.referencesHsieh, S., Hornberger, M., Piguet, O., & Hodges, J. R. (2012). Brain correlates of musical and facial emotion recognition: Evidence from the dementias. Neuropsychologia, 50(8), 1814–1822. https://doi.org/10.1016/j.neuropsychologia.2012.04.006spa
dc.relation.referencesHucklebridge, F., Lambert, S., Clow, A., Warburton, D. M., Evans, P. D., & Sherwood, N. (2000). Modulation of secretory immunoglobulin A in saliva; response to manipulation of mood. Biological Psychology, 53(1), 25–35. https://doi.org/10.1016/S0301-0511(00)00040-5spa
dc.relation.referencesHuron, D. (2001). Is Music an Evolutionary Adaptation? Annals of the New York Academy of Sciences, 930(1), 43–61.spa
dc.relation.referencesHyde, K. L., & Peretz, I. (2004). Brains That Are out of Tune but in time. Psychological Science, 15(5), 356–360. https://doi.org/10.1111/j.0956-7976.2004.00683.xspa
dc.relation.referencesInoue, Y., Takahashi, T., Burriss, R. P., Arai, S., Hasegawa, T., Yamagishi, T., & Kiyonari, T. (2017). Testosterone promotes either dominance or submissiveness in the Ultimatum Game depending on players’ social rank. Scientific Reports, 7(1), 5335. https://doi.org/10.1038/s41598-017-05603-7spa
dc.relation.referencesJ. Trost, W., Labbé, C., & Grandjean, D. (2017). Rhythmic entrainment as a musical affect induction mechanism. Neuropsychologia, Vol. 96, pp. 96–110. https://doi.org/10.1016/j.neuropsychologia.2017.01.004spa
dc.relation.referencesJäncke, L. (2009). Music drives brain plasticity. F1000 Biology Reports, 1, 78. https://doi.org/10.3410/B1-78spa
dc.relation.referencesJiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., Chen, X., & Yang, Y. (2012). Amusia Results in Abnormal Brain Activity following Inappropriate Intonation during Speech Comprehension. PLoS ONE, 7(7), e41411. https://doi.org/10.1371/journal.pone.0041411spa
dc.relation.referencesJiang, C., Hamm, J. P., Lim, V. K., Kirk, I. J., & Yang, Y. (2010). Processing melodic contour and speech intonation in congenital amusics with Mandarin Chinese. Neuropsychologia, 48(9), 2630–2639. https://doi.org/10.1016/J.NEUROPSYCHOLOGIA.2010.05.009
dc.relation.referencesJiang, C., Liu, F., & Wong, P. C. M. (2017). Sensitivity to musical emotion is influenced by tonal structure in congenital amusia. Scientific Reports, 7(1), 7624. https://doi.org/10.1038/s41598-017-08005-xspa
dc.relation.referencesJustus, T., & Hutsler, J. J. (2005). Fundamental issues in the evolutionary psychology of music:: Assessing Innateness and Domain Specificity. Music Perception, 23(1), 1– 27. https://doi.org/10.1525/mp.2005.23.1.1spa
dc.relation.referencesKarageorghis, C. I., & Terry, P. C. (2012). Chapter 1 - The psychological, psychophysical and ergogenic effects of music in sport: A review and synthesis. In Sporting Sounds: Relationships Between Sport and Music (Vol. 1, pp. 13–36). https://doi.org/10.4324/9780203887974spa
dc.relation.referencesKawase, S., & Ogawa, J. (2018). Group music lessons for children aged 1–3 improve accompanying parents’ moods. Psychology of Music, 1, 11. https://doi.org/10.1177/0305735618803791spa
dc.relation.referencesKeeler, J. R., Roth, E. A., Neuser, B. L., Spitsbergen, J. M., Waters, D. J. M., & Vianney, J.-M. (2015). The neurochemistry and social flow of singing: bonding and oxytocin. Frontiers in Human Neuroscience, 9. https://doi.org/10.3389/fnhum.2015.00518spa
dc.relation.referencesKhalfa, S., Guye, M., Peretz, I., Chapon, F., Girard, N., Chauvel, P., & Liégeois-Chauvel, C. (2008). Evidence of lateralized anteromedial temporal structures involvement in musical emotion processing. Neuropsychologia, 46(10), 2485–2493. https://doi.org/10.1016/j.neuropsychologia.2008.04.009spa
dc.relation.referencesKiebel, S. J., Daunizeau, J., & Friston, K. J. (2008). A Hierarchy of Time-Scales and the Brain. PLoS Computational Biology, 4(11), e1000209. https://doi.org/10.1371/journal.pcbi.1000209spa
dc.relation.referencesKirschner, S., & Tomasello, M. (2009). Joint drumming: Social context facilitates synchronization in preschool children. Journal of Experimental Child Psychology, 102(3), 299–314. https://doi.org/10.1016/j.jecp.2008.07.005spa
dc.relation.referencesKirschner Sebastian, S., & Tomasello, M. (2010). Joint music making promotes prosocial behavior in 4-year-old children. Evolution and Human Behavior, 31(5), 354–364. https://doi.org/10.1016/j.evolhumbehav.2010.04.004spa
dc.relation.referencesKoechlin, E., & Jubault, T. (2006). Broca’s Area and the Hierarchical Organization of Human Behavior. Neuron, 50(6), 963–974. https://doi.org/10.1016/j.neuron.2006.05.017spa
dc.relation.referencesKoelsch, S. (2010). Towards a neural basis of music-evoked emotions. Trends in Cognitive Sciences, 14(3), 131–137. https://doi.org/10.1016/j.tics.2010.01.002spa
dc.relation.referencesKoelsch, S. (2012). Music and language. In Brain and music (p. 308). Wiley-Blackwell.spa
dc.relation.referencesKonoike, N., Kotozaki, Y., Jeong, H., Miyazaki, A., Sakaki, K., Shinada, T., … Nakamura, K. (2015). Temporal and Motor Representation of Rhythm in FrontoParietal Cortical Areas: An fMRI Study. PLOS ONE, 10(6), e0130120. https://doi.org/10.1371/journal.pone.0130120spa
dc.relation.referencesKrebs, J. R., & Kroodsma, D. E. (1980). Repertoires and Geographical Variation in Bird Song. Advances in the Study of Behavior, 11, 143–177. https://doi.org/10.1016/S0065-3454(08)60117-5spa
dc.relation.referencesKreutz, G. (2014). Does Singing Facilitate Social Bonding? Music and Medicine, 6(2), 51–60.spa
dc.relation.referencesKreutz, G., Bongard, S., Rohrmann, S., Hodapp, V., & Grebe, D. (2004). Effects of Choir Singing or Listening on Secretory Immunoglobulin A, Cortisol, and Emotional State. Journal of Behavioral Medicine, 27(6), 623–635. https://doi.org/10.1007/s10865- 004-0006-9spa
dc.relation.referencesKuck, H., Grossbach, M., Bangert, M., & Altenmüller, E. (2003). Brain processing of meter and rhythm in music. Electrophysiological evidence of a common network. Annals of the New York Academy of Sciences, 999, 244–253.spa
dc.relation.referencesLappe, C., Herholz, S. C., Trainor, L. J., & Pantev, C. (2008). Cortical Plasticity Induced by Short-Term Unimodal and Multimodal Musical Training. Journal of Neuroscience, 28(39), 9632–9639. https://doi.org/10.1523/jneurosci.2254-08.2008spa
dc.relation.referencesLarge, E. W., & Gray, P. M. (2015). Supplemental Material for Spontaneous Tempo and Rhythmic Entrainment in a Bonobo (Pan paniscus). Journal of Comparative Psychology, 129(4), 317. https://doi.org/10.1037/com0000011.suppspa
dc.relation.referencesLaunay, J., Dean, R. T., & Bailes, F. (2013). Synchronization can influence trust following virtual interaction. Experimental Psychology, 60(1), 53–63. https://doi.org/10.1027/1618-3169/a000173spa
dc.relation.referencesLehmann, J., Korstjens, A. H., & Dunbar, R. I. M. (2007). Group size, grooming and social cohesion in primates. Animal Behaviour, 74(6), 1617–1629. https://doi.org/10.1016/j.anbehav.2006.10.025spa
dc.relation.referencesLeongómez, J. D. (2015). La música como objeto de estudio científico: consideraciones en torno a la musicalidad y el origen de la música. (Pensamiento), (Palabra) y Obra, 96 13(13), 77–86. https://doi.org/10.17227/2011804X.15PPO77.86spa
dc.relation.referencesLeongómez, J. D., Binter, J., Kubicová, L., Stolařová, P., Klapilová, K., Havlíček, J., & Roberts, S. C. (2014). Vocal modulation during courtship increases proceptivity even in naive listeners. Evolution and Human Behavior, 35(6), 489–496. https://doi.org/10.1016/j.evolhumbehav.2014.06.008spa
dc.relation.referencesLévi-Strauss, C. (1958). Anthropologie structurale. Population (French Edition), 13(3), 527–528. https://doi.org/10.2307/1525444spa
dc.relation.referencesLima, C. F., Brancatisano, O., Fancourt, A., Müllensiefen, D., Scott, S. K., Warren, J. D., & Stewart, L. (2016). Impaired socio-emotional processing in a developmental music disorder. Scientific Reports, 6(1), 34911. https://doi.org/10.1038/srep34911spa
dc.relation.referencesLolli, S. L., Lewenstein, A. D., Basurto, J., Winnik, S., & Loui, P. (2015). Sound frequency affects speech emotion perception: results from congenital amusia. Frontiers in Psychology, 6, 1340. https://doi.org/10.3389/fpsyg.2015.01340spa
dc.relation.referencesLortat-Jacob, B., & Bernard. (2004). Ce que chanter veut dire. L’Homme. Revue Française d’anthropologie, (171–172), 83–101. https://doi.org/10.4000/lhomme.24862spa
dc.relation.referencesLove, T. M. (2014). Oxytocin, motivation and the role of dopamine. Pharmacology Biochemistry and Behavior, 119, 49–60. https://doi.org/10.1016/j.pbb.2013.06.011spa
dc.relation.referencesLu, X., Ho, H. T., Liu, F., Wu, D., & Thompson, W. F. (2015). Intonation processing deficits of emotional words among Mandarin Chinese speakers with congenital amusia: an ERP study. Frontiers in Psychology, 6, 385. https://doi.org/10.3389/fpsyg.2015.00385spa
dc.relation.referencesLucas, G., Clayton, M., & Leante, L. (2017). Inter-group entrainment in Afro-Brazilian Congado ritual. Empirical Musicology Review, 6(2), 75–102. https://doi.org/10.18061/1811/51203spa
dc.relation.referencesLudke, K. M., Ferreira, F., & Overy, K. (2014). Singing can facilitate foreign language learning. Memory and Cognition, 42(1), 41–52. https://doi.org/10.3758/s13421-013- 0342-5spa
dc.relation.referencesManer, J. K. (2017). Dominance and prestige: A tale of two hierarchies. Current Directions in Psychological Science, Vol. 26, pp. 526–531. https://doi.org/10.1177/0963721417714323spa
dc.relation.referencesMarcus, G. F. (2012). Musicality: Instinct or Acquired Skill? Topics in Cognitive Science, 4(4), 498–512. https://doi.org/10.1111/j.1756-8765.2012.01220.xspa
dc.relation.referencesMarek, S., & Dosenbach, N. U. F. (2018). The frontoparietal network: function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133–140.spa
dc.relation.referencesMarin, M. M., Thompson, W. F., Gingras, B., & Stewart, L. (2015). Affective evaluation of simultaneous tone combinations in congenital amusia. Neuropsychologia, 78, 207– 220. https://doi.org/10.1016/j.neuropsychologia.2015.10.004spa
dc.relation.referencesMarler, P. (2001). Origins of music and speech: Insights from animals. In The origins of music (pp. 31–48).spa
dc.relation.referencesMartínez C, M. (2017). Música y movimiento en Educación Infantil (pp. 1–35). pp. 1–35. Retrieved from http://digibug.ugr.es/bitstream/handle/10481/45895/MartinezCotes_TFGMusicaMotr icidad.pdf?sequence=1spa
dc.relation.referencesMatheson, M. D., & Bernstein, I. S. (2000). Grooming, social bonding, and agonistic aiding in rhesus monkeys. American Journal of Primatology, 51(3), 177–186. https://doi.org/10.1002/1098-2345(200007)51:3<177::AID-AJP2>3.0.CO;2-Kspa
dc.relation.referencesMathias, B., Lidji, P., Honing, H., Palmer, C., & Peretz, I. (2016). Electrical Brain Responses to Beat Irregularities in Two Cases of Beat Deafness. Frontiers in Neuroscience, 10, 40. https://doi.org/10.3389/fnins.2016.00040spa
dc.relation.referencesMatthews, W. K., & Kitsantas, A. (2007). Group cohesion, collective efficacy, and motivational climate as predictors of conductor support in music ensembles. Journal of Research in Music Education, 55(1), 6–17. https://doi.org/10.1177/002242940705500102spa
dc.relation.referencesMcAdams, S. (2013). Musical Timbre Perception. The Psychology of Music, 35–67. https://doi.org/10.1016/B978-0-12-381460-9.00002-Xspa
dc.relation.referencesMcDermott, J. H., Lehr, A. J., & Oxenham, A. J. (2008). Is relative pitch specific to pitch? Psychological Science, 19(12), 1263–1271. https://doi.org/10.1111/j.1467- 9280.2008.02235.xspa
dc.relation.referencesMcFerran, K. S., & Wölfl, A. (2015). Music, Violence and Music Therapy with Young People in Schools: A position paper A Brief History of Music and Violence. Voices: A World Forum for Music The, 15(2). Retrieved from https://www.youtube.com/watch?v=lKpLckWspa
dc.relation.referencesMehr, S., Singh, M., Knox, D., Lucas, C., Ketter, D., Pickens-Jones, D., … Glowacki, L. (2018). A natural history of song. PsyArXiv Preprints.spa
dc.relation.referencesMeister, I. G., Boroojerdi, B., Foltys, H., Sparing, R., Huber, W., & Töpper, R. (2003). Motor cortex hand area and speech: implications for the development of language. Neuropsychologia, 41(4), 401–406.spa
dc.relation.referencesMerker, B. H., Madison, G. S., & Eckerdal, P. (2009). On the role and origin of isochrony in human rhythmic entrainment. Cortex, 45(1), 4–17. https://doi.org/10.1016/j.cortex.2008.06.011spa
dc.relation.referencesMiller, G. F. (2001). Evolution of Human Music through Sexual Selection. The Origins of Music, 329–360. https://doi.org/10.7551/mitpress/5190.003.0025spa
dc.relation.referencesMiller, K. J., Foster, B. L., & Honey, C. J. (2012). Does rhythmic entrainment represent a generalized mechanism for organizing computation in the brain? Frontiers inspa
dc.relation.referencesMitterschiffthaler, M. T., Fu, C. H. Y., Dalton, J. A., Andrew, C. M., & Williams, S. C. R. (2007). A functional MRI study of happy and sad affective states induced by classical music. Human Brain Mapping, 28(11), 1150–1162. https://doi.org/10.1002/hbm.20337spa
dc.relation.referencesMorton, D., & Malm, W. P. (2006). Music Cultures of the Pacific, the Near East, and Asia. Ethnomusicology, 12(1), 140. https://doi.org/10.2307/850562spa
dc.relation.referencesMosing, M. A., Verweij, K. J. H., Madison, G., Pedersen, N. L., Zietsch, B. P., & Ullén, F. (2015). Did sexual selection shape human music? Testing predictions from the sexual selection hypothesis of music evolution using a large genetically informative sample of over 10,000 twins. Evolution and Human Behavior, 36(5), 359–366. https://doi.org/10.1016/j.evolhumbehav.2015.02.004spa
dc.relation.referencesMüller, F. “Floyd,” Agamanolis, S., & Picard, R. (2003). Exertion interfaces: sports over a distance for social bonding and fun. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems - CHI’03, 561–568. https://doi.org/10.1145/642611.642709spa
dc.relation.referencesMünte, T. F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3(6), 473–478. https://doi.org/10.1038/nrn843spa
dc.relation.referencesNoad, M. J., Cato, D. H., Bryden, M. M., Jenner, M.-N., & Jenner, K. C. S. (2000). Cultural revolution in whale songs. Nature, 408(6812), 537–537. https://doi.org/10.1038/35046199spa
dc.relation.referencesNorth, A. C., & Hargreaves, D. J. (1999). Music and Adolescent Identity. Music Education Research, 1(1), 75–92. https://doi.org/10.1080/1461380990010107spa
dc.relation.referencesNorth, A. C., Hargreaves, D. J., & O’Neill, S. A. (2000). The importance of music to adolescents. British Journal of Educational Psychology, 70(2), 255–272. 100 https://doi.org/10.1348/000709900158083spa
dc.relation.referencesNowicki, S., & Marler, P. (1988). How do birds sing? Music Perception: An Interdisciplinary Journal, 5(4), 391–426.spa
dc.relation.referencesNozaradan, S. (2014). Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging. Philosophical Transactions of the Royal Society B: Biological Sciences, Vol. 369, pp. 20130393–20130393. https://doi.org/10.1098/rstb.2013.0393spa
dc.relation.referencesNunes Silva, M., & Geraldi Haase, V. (2013). Amusias and modularity of musical cognitive processing. Psychology and Neuroscience, 6(1), 45–56. https://doi.org/10.3922/j.psns.2013.1.08spa
dc.relation.referencesO’Neill, C. T., Trainor, L. J., & Trehub, S. E. (2001). Infants’ Responsiveness to Fathers’ Singing. Music Perception, 18(4), 409–425. https://doi.org/10.1525/mp.2001.18.4.409spa
dc.relation.referencesObleser, J., & Eisner, F. (2009). Pre-lexical abstraction of speech in the auditory cortex. Trends in Cognitive Sciences, 13(1), 14–19. https://doi.org/10.1016/j.tics.2008.09.005spa
dc.relation.referencesPatel, A. D. (2010). Music, biological evolution, and the brain. In Vesicle.Nsi.Edu.spa
dc.relation.referencesPatel, A. D. (2014). The Evolutionary Biology of Musical Rhythm: Was Darwin Wrong? PLoS Biology, 12(3). https://doi.org/10.1371/journal.pbio.1001821spa
dc.relation.referencesPearce, E., Launay, J., Van Duijn, M., Rotkirch, A., David-Barrett, T., & Dunbar, R. I. M. (2016). Singing together or apart: The effect of competitive and cooperative singing on social bonding within and between sub-groups of a university Fraternity. Psychology of Music, 44(6), 1255–1273. https://doi.org/10.1177/0305735616636208spa
dc.relation.referencesPerani, D., Saccuman, M. C., Scifo, P., Spada, D., Andreolli, G., Rovelli, R., … Koelsch, 101 S. (2010). Functional specializations for music processing in the human newborn brain. Proceedings of the National Academy of Sciences, 107(10), 4758–4763. https://doi.org/10.1073/pnas.0909074107spa
dc.relation.referencesPeretz, I. (1990). Processing of local and global musical information by unilateral braindamaged patients. Brain : A Journal of Neurology, 113 ( Pt 4, 1185–1205.spa
dc.relation.referencesPeretz, I. (2006). The nature of music from a biological perspective. Cognition, 100(1), 1–32. https://doi.org/10.1016/j.cognition.2005.11.004spa
dc.relation.referencesPeretz, I. (2009). Music, Language and Modularity Framed in Action. Psychologica Belgica, 49(2–3), 157. https://doi.org/10.5334/pb-49-2-3-157spa
dc.relation.referencesPeretz, I. (2016). Neurobiology of Congenital Amusia. Trends in Cognitive Sciences, 20(11), 857–867. https://doi.org/10.1016/j.tics.2016.09.002spa
dc.relation.referencesPeretz, I., Ayotte, J., Zatorre, R. J., Mehler, J., Ahad, P., Penhune, V. B., & Jutras, B. (2002). Congenital Amusia: A disorder of fine-grained pitch discrimination. Neuron, 33(2), 185–191. https://doi.org/10.1016/S0896-6273(01)00580-3spa
dc.relation.referencesPeretz, I., & Coltheart, M. (2003). Modularity of music processing. Nature Neuroscience, Vol. 6, pp. 688–691. https://doi.org/10.1038/nn1083spa
dc.relation.referencesPeretz, I., Cummings, S., & Dubé, M.-P. (2007). The Genetics of Congenital Amusia (Tone Deafness): A Family-Aggregation Study. The American Journal of Human Genetics, 81(3), 582–588. https://doi.org/10.1086/521337spa
dc.relation.referencesPeretz, I., & Hyde, K. L. (2003). What is specific to music processing? Insights from congenital amusia. Trends in Cognitive Sciences, 7(8), 362–367. https://doi.org/10.1016/S1364-6613(03)00150-5spa
dc.relation.referencesPfeifer, J., & Hamann, S. (2018). The Nature and Nurture of Congenital Amusia: A Twin Case Study. Frontiers in Behavioral Neuroscience, 12, 120. https://doi.org/10.3389/fnbeh.2018.00120spa
dc.relation.referencesPhillips-Silver, J., Aktipis, C. A., & Bryant, G. A. (2010). The ecology of entrainment: Foundations of coordinated rhythmic movement. Music Perception, 28(1), 3–14. https://doi.org/10.1525/mp.2010.28.1.3spa
dc.relation.referencesPhillips-Silver, J., Toiviainen, P., Gosselin, N., Piché, O., Nozaradan, S., Palmer, C., & Peretz, I. (2011). Born to dance but beat deaf: A new form of congenital amusia. Neuropsychologia, 49(5), 961–969. https://doi.org/10.1016/j.neuropsychologia.2011.02.002spa
dc.relation.referencesPinker, S. (1997). How the mind works (Vol. 35). W. W. Norton & Company.spa
dc.relation.referencesPinker, S. (1998). How the mind works. London: Penguin Books.spa
dc.relation.referencesPinker, S. (2007). Toward a consilient study of literature. Philosophy and Literature, 31(1), 162–178. https://doi.org/10.1353/phl.2007.0016spa
dc.relation.referencesPorter, J., Blacking, J., & Byron, R. (2006). Music, Culture and Experience: Selected Papers of John Blacking. Western Folklore, 55(2), 163. https://doi.org/10.2307/1500182spa
dc.relation.referencesRabinowitch, T. C., Cross, I., & Burnard, P. (2013). Long-term musical group interaction has a positive influence on empathy in children. Psychology of Music, 41(4), 484– 498. https://doi.org/10.1177/0305735612440609spa
dc.relation.referencesRacette, A., Bard, C., & Peretz, I. (2006). Making non-fluent aphasics speak: Sing along! Brain, 129(10), 2571–2584. https://doi.org/10.1093/brain/awl250spa
dc.relation.referencesRappoport, D., & Dana. (2004). Musique et morphologie rituelle. Chez les Toraja d’Indonésie. L’Homme. Revue Française d’anthropologie, (171–172), 197–218. https://doi.org/10.4000/lhomme.24892spa
dc.relation.referencesRauschecker, J. P., Friederici, A. D., & Wise, R. J. S. (2012). Ventral and dorsal streams in the evolution of speech and language. https://doi.org/10.3389/fnevo.2012.00007spa
dc.relation.referencesRivers, J. W., & Kroodsma, D. E. (2000). Singing Behavior of the Hermit Thrush. Journal 103 of Field Ornithology, 71(3), 467–471. https://doi.org/10.1648/0273-8570-71.3.467spa
dc.relation.referencesRodrigues, A. C., Loureiro, M., & Caramelli, P. (2014). Visual memory in musicians and non-musicians. Frontiers in Human Neuroscience, 8, 424. https://doi.org/10.3389/fnhum.2014.00424spa
dc.relation.referencesRouget, G. (2004). L’efficacité musicale: musiquer pour survivre. Le cas des Pygmées. L’Homme. Revue Française d’anthropologie, (171–172), 27–52. https://doi.org/10.4000/lhomme.24855spa
dc.relation.referencesRouse, A. A., Cook, P. F., Large, E. W., & Reichmuth, C. (2016). Beat keeping in a sea lion as coupled oscillation: Implications for comparative understanding of human rhythm. Frontiers in Neuroscience, 10, 256. https://doi.org/10.3389/fnins.2016.00257spa
dc.relation.referencesSaarikallio, S., & Erkkilä, J. (2007). The role of music in adolescents’ mood regulation. Psychology of Music, 35(1), 88–109. https://doi.org/10.1177/0305735607068889spa
dc.relation.referencesSalimpoor, V. N., Benovoy, M., Larcher, K., Dagher, A., & Zatorre, R. J. (2011). Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nature Neuroscience, 14(2), 257–262. https://doi.org/10.1038/nn.2726spa
dc.relation.referencesSalmon, S. (2012). Musica humana: Thoughts on humanistic aspects of Orff-Schulwerk. Orff Schulwerk Informationen, 87, 13–19spa
dc.relation.referencesSammler, D. (2018). The Melodic Mind: Neural bases of intonation in speech and music.spa
dc.relation.referencesSchachner, A., Brady, T. F., Pepperberg, I. M., & Hauser, M. D. (2009). Spontaneous Motor Entrainment to Music in Multiple Vocal Mimicking Species. Current Biology, 19(10), 831–836. https://doi.org/10.1016/j.cub.2009.03.061spa
dc.relation.referencesSchaller, G. B. (1963). The mountain gorilla Chicago. Univ. Chicago Press.spa
dc.relation.referencesSchladt, T. M., Nordmann, G. C., Emilius, R., Kudielka, B. M., de Jong, T. R., & 104 Neumann, I. D. (2017). Choir versus Solo Singing: Effects on Mspa
dc.relation.referencesNeumann, I. D. (2017). Choir versus Solo Singing: Effects on Mood, and Salivary Oxytocin and Cortisol Concentrations. Frontiers in Human Neuroscience, 11, 430. https://doi.org/10.3389/fnhum.2017.00430spa
dc.relation.referencesSchlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 37–55. https://doi.org/10.1016/bs.pbr.2014.11.020spa
dc.relation.referencesSchlaug, G., Marchina, S., & Norton, A. (2008). From Singing to Speaking: Why Singing May Lead to Recovery of Expressive Language Function in Patients with Broca’s Aphasia. Music Perception, 25(4), 315–323. https://doi.org/10.1525/MP.2008.25.4.315spa
dc.relation.referencesSchögler, B. (1998). Music as a tool in communications research. Nordisk Tidsskrift for Musikkterapi, 7(1), 40–49. https://doi.org/10.1080/08098139809477919spa
dc.relation.referencesSchuppert, M., Münte, T. F., Wieringa, B. M., & Altenmüller, E. (2000). Receptive amusia: evidence for cross-hemispheric neural networks underlying music processing strategies. Brain, 123(3), 546–559. https://doi.org/10.1093/brain/123.3.546spa
dc.relation.referencesSeeger, A. (2017). Chanter l’identité. L’Homme. Revue Française d’anthropologie, (171– 172), 135–150. https://doi.org/10.4000/lhomme.24877spa
dc.relation.referencesSmith, J. N., Goldizen, A. W., Dunlop, R. A., & Noad, M. J. (2008). Songs of male humpback whales, Megaptera novaeangliae, are involved in intersexual interactions. Animal Behaviour, 76(2), 467–477. https://doi.org/10.1016/J.ANBEHAV.2008.02.013spa
dc.relation.referencesSparks, R., Helm, N., & Albert, M. (1974). Aphasia rehabilitation resulting from melodic intonation therapy. Cortex; a Journal Devoted to the Study of the Nervous System and Behavior, 10(4), 303–316.spa
dc.relation.referencesStainsby, T., & Cross, I. (2012). The perception of pitch (Vol. 1; S. Hallam, I. Cross, & M. 105 Thaut, Eds.). https://doi.org/10.1093/oxfordhb/9780199298457.013.0005spa
dc.relation.referencesSteinthal, H. (1881). Einleitung in die Psychologie und Sprachwissenschaft.spa
dc.relation.referencesSue Carter, C. (1998). Neuroendocrine perspectives on social attachment and love. Psychoneuroendocrinology, 23(8), 779–818. https://doi.org/10.1016/S0306- 4530(98)00055-9spa
dc.relation.referencesSullivan, P., & Rickers, K. (2013). The effect of behavioral synchrony in groups of teammates and strangers. International Journal of Sport and Exercise Psychology, 11(3), 286–291. https://doi.org/10.1080/1612197X.2013.750139spa
dc.relation.referencesSuzuki, M., Kanamori, M., Watanabe, M., Nagasawa, S., Kojima, E., Ooshiro, H., & Nakahara, D. (2004). Behavioral and endocrinological evaluation of music therapy for elderly patients with dementia. Nursing and Health Sciences, 6(1), 11–18. https://doi.org/10.1111/j.1442-2018.2003.00168.xspa
dc.relation.referencesTalamini, F., Carretti, B., & Grassi, M. (2016). The Working Memory of Musicians and Nonmusicians. Music Perception: An Interdisciplinary Journal, 34(2), 183–191. https://doi.org/10.1525/mp.2016.34.2.183spa
dc.relation.referencesTattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425). https://doi.org/10.1086/511618spa
dc.relation.referencesTattersall, I. (2006). The Singing Neanderthals: The Origins of Music, Language, Mind and Body. In The Quarterly Review of Biology (Vol. 81, pp. 425–425). https://doi.org/10.1086/511618spa
dc.relation.referencesTeramitsu, I., & White, S. A. (2006). FoxP2 Regulation during Undirected Singing in Adult Songbirds. Journal of Neuroscience, 26(28), 7390–7394. https://doi.org/10.1523/jneurosci.1662-06.2006spa
dc.relation.referencesTheorell, T. (2014). Music in Social Cohesion. In Psychological Health Effects of Musical Experiences (pp. 17–27). https://doi.org/10.1007/978-94-017-8920-2_3spa
dc.relation.referencesThorpe, L. A., & Cohen, A. J. (2007). The origins of musicality. Infant Behavior and Development, 7, 363. https://doi.org/10.1016/s0163-6383(84)80425-7spa
dc.relation.referencesTomasello, M., & Carpenter, M. (2007). Shared intentionality. Developmental Science, 10(1), 121–125. https://doi.org/10.1111/j.1467-7687.2007.00573.xspa
dc.relation.referencesTomasello, M., Carpenter, M., Call, J., Behne, T., & Moll, H. (2005). Understanding and sharing intentions: The origins of cultural cognition. Behavioral and Brain Sciences, 28(5), 675–691. https://doi.org/10.1017/S0140525X05000129spa
dc.relation.referencesTrainor, L. J., Austin, C. M., & Desjardins, R. N. (2000). Is infant-directed speech prosody a result of the vocal expression of emotion? Psychological Science, 11(3), 188–195. https://doi.org/10.1111/1467-9280.00240spa
dc.relation.referencesTrehub, S. E. (2001). Human processing predispositions and musical universals. In The origins of music. (pp. 427–448).spa
dc.relation.referencesTrehub, S. E. (2003). The developmental origins of musicality. Nature Neuroscience, Vol. 6, pp. 669–673. https://doi.org/10.1038/nn1084spa
dc.relation.referencesTrehub, S. E. (2018). Human Processing Predispositions and Musical Universals. In B. M. & S. B. N. L. Wallin (Ed.), The Origins of Music (pp. 427–448). https://doi.org/10.7551/mitpress/5190.003.0030spa
dc.relation.referencesTrehub, S. E., Plantinga, J., Brcic, J., & Nowicki, M. (2013). Cross-modal signatures in maternal speech and singing. Frontiers in Psychology, 4, 811. https://doi.org/10.3389/fpsyg.2013.00811spa
dc.relation.referencesTyack, P. L. (1997). Vocal learning in cetaceans. Social Influences on Vocal Development, 26, 208–233. Retrieved from http://books.google.ch/books?id=U7h3s79HcrACspa
dc.relation.referencesUllén, F., Mosing, M. A., Holm, L., Eriksson, H., & Madison, G. (2014). Psychometric properties and heritability of a new online test for musicality, the Swedish Musical Discrimination Test. Personality and Individual Differences, 63, 87–93. https://doi.org/10.1016/j.paid.2014.01.057spa
dc.relation.referencesUozumi, T., Tamagawa, A., Hashimoto, T., & Tsuji, S. (2004). Motor hand representation in cortical area 44. Neurology, 62(5), 757–761.spa
dc.relation.referencesUvnäs-Moberg, K. (1998). Oxytocin may mediate the benefits of positive social interaction and emotions. Psychoneuroendocrinology, 23(8), 819–835. https://doi.org/10.1016/S0306-4530(98)00056-0spa
dc.relation.referencesValdesolo, P., & DeSteno, D. (2011). Synchrony and the social tuning of compassion. Emotion, 11(2), 262–266. https://doi.org/10.1037/a0021302spa
dc.relation.referencesVan Puyvelde, M., Vanfleteren, P., Loots, G., Deschuyffeleer, S., Vinck, B., Jacquet, W., & Verhelst, W. (2010). Tonal synchrony in mother-infant interaction based on harmonic and pentatonic series. Infant Behavior and Development, 33(4), 387–400. https://doi.org/10.1016/j.infbeh.2010.04.003spa
dc.relation.referencesVernia C, A. M., Gustems C, J., & G, Calderón, C. (2016). Ritmo y procesamiento temporal. Aportaciones de Jaques-Dalcroze al lenguaje musical. Magister, 28(1), 35–41. https://doi.org/10.1016/j.magis.2016.06.003spa
dc.relation.referencesWallentin, M., Nielsen, A. H., Friis-Olivarius, M., Vuust, C., & Vuust, P. (2010). The Musical Ear Test, a new reliable test for measuring musical competence. Learning and Individual Differences, 20(3), 188–196. https://doi.org/10.1016/j.lindif.2010.02.004spa
dc.relation.referencesWallin, N. L., Merker, B. H., & Brown, S. (2000). The origins of music. MIT Press.spa
dc.relation.referencesWan, C. Y., & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, Vol. 16, pp. 566–577. https://doi.org/10.1177/1073858410377805spa
dc.relation.referencesWebb, D. M., & Zhang, J. (2005). FoxP2 in song-learning birds and vocal-learning mammals. Journal of Heredity, 96(3), 212–216. https://doi.org/10.1093/jhered/esi025spa
dc.relation.referencesWeinstein, D., Launay, J., Pearce, E., Dunbar, R. I. M., & Stewart, L. (2016). Singing and social bonding: Changes in connectivity and pain threshold as a function of group size. Evolution and Human Behavior, 37(2), 152–158. https://doi.org/10.1016/j.evolhumbehav.2015.10.002spa
dc.relation.referencesWelch, G. F., Himonides, E., Saunders, J., Papageorgi, I., & Sarazin, M. (2014). Singing and social inclusion. Frontiers in Psychology, 5, 803. https://doi.org/10.3389/fpsyg.2014.00803spa
dc.relation.referencesWhaling, C. (2000). What’s behind a song? The neural basis of song learning in birds. The Origins of Music, 65–76spa
dc.relation.referencesWhite, S. A. (2010). Genes and vocal learning. Brain and Language, 115(1), 21–28. https://doi.org/10.1016/j.bandl.2009.10.002spa
dc.relation.referencesWilliams, D. (2004). Homologues and Homology, Phenetics and Cladistics. Systematics Association Special Volume, 67, 191–224. https://doi.org/10.1201/9780203643037.ch9spa
dc.relation.referencesYoungerman, S. (1974). Maori Dancing since the Eighteenth Century. Ethnomusicology, 18(1), 75. https://doi.org/10.2307/850061spa
dc.relation.referencesZatorre, R J, & Belin, P. (2001). Spectral and temporal processing in human auditory cortex. Cerebral Cortex (New York, N.Y. : 1991), 11(10), 946–953.spa
dc.relation.referencesZatorre, Robert J. (1979). Recognition of dichotic melodies by musicians and nonmusicians. Neuropsychologia, 17(6), 607–617. https://doi.org/10.1016/0028- 3932(79)90035-6spa
dc.relation.referencesZhishuai, J., Hong, L., Daxing, W., Pin, Z., & Xuejing, L. (2017). Processing of emotional faces in congenital amusia: An emotional music priming event-related potential study. NeuroImage: Clinical, 14, 602–609. https://doi.org/10.1016/J.NICL.2017.02.024spa
dc.relation.referencesZimmerman, E., & Maron, J. L. (2016). FOXP2 gene deletion and infant feeding difficulties: a case report. Molecular Case Studies, 2(1), a000547. https://doi.org/10.1101/mcs.a000547spa
dc.publisher.facultyFacultad de Bellas Artesspa
dc.type.localTesis/Trabajo de grado - Monografía – Pregradospa
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1feng
dc.description.degreenameLicenciado en Músicaspa
dc.description.degreelevelTesis de pregradospa
dc.type.driverinfo:eu-repo/semantics/bachelorThesiseng
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.instnameinstname:Universidad Pedagógica Nacionalspa
dc.identifier.reponamereponame: Repositorio Institucional UPNspa
dc.identifier.repourlrepourl: http://repositorio.pedagogica.edu.co/
dc.description.abstractenglishMusic teachers often affirm that, according to their experience, music benefits students in several ways. On this research we evaluate the hypothesis of making music promoting teamwork. 15 groups of five people, each of them composed of unknown men and women, from ages ranging from 18 to 28 years old and from different universities from Bogotá, were assigned to three different conditions: rhythmic, melodic - rhythm and control. Each group had to compose or improvise something to represent them: For rhythmic condition, participants had to compose or improvise a rhythm and interpret it together; on melodic rhythm condition, participants had to compose a song or sing an existing one to represent them; and control group had to create a sentence or slogan that didn't have any music like component. Afterwards, each group had to work together to complete two activities. First, they had to unwrap five ropes tied together in a standard way and following specific instructions. When the ropes were unwrapped, the group had to resolve a 15 pieces puzzle, in which two of the participants had their eyes covered and manipulated the pieces, while the other three gave the instructions, in a specific order, to put the pieces together. Time of completion was measured from the moment they started unwrapping the ropes until the las piece of the puzzle was correctly put together. Data was analyzed by performing an ANCOVA, comparing means of time of completion in each condition and controlling for three covariables: I) the mean of the group on a musicality test and the mean of the group on II) Dominance – III) Prestige scale. The results did not allow us to infer strongly enough a relation between conditions and the completion time on the group work activities (p = 0.797). Implications of these results were analyzed according to a literature review on which we examine different hypothesis which provide music with an evolutive valueeng
dc.type.versioninfo:eu-repo/semantics/acceptedVersioneng
dc.type.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaeng
dc.rights.creativecommonsAttribution-NonCommercial-NoDerivatives 4.0 International


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by-nc-nd/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by-nc-nd/4.0/