“Los Tres Primeros Minutos del Universo”

Documentación de un proceso compositivo que parte de un impulso extra musical:

El Big Bang

Ana Milena Cruz Pacheco

Asesor: Victoriano Valencia Rincón

Universidad Pedagógica Nacional de Colombia

Facultad De Bellas Artes

Licenciatura En Música

Bogotá 2018
1. Información General

Tipo de documento: TRABAJO DE GRADO

Acceso al documento: UNIVERSIDAD PEDAGÓGICA NACIONAL. BIBLIOTECA FACULTAD DE BELLAS ARTES

Título del documento: "LOS TRES PRIMEROS MINUTOS DEL UNIVERSO" DOCUMENTACIÓN DE UN PROCESO COMPOSITIVO QUE PARTE DE UN IMPULSO EXTRA MUSICAL: EL BIG BANG

Autor(es): CRUZ PACHECO, ANA MILENA

Director: VALENCIA RINCON, VICTORIANO

Unidad Patrocinante: UNIVERSIDAD PEDAGÓGICA NACIONAL, UPN

Palabras Claves: Investigación creación, Big bang, Impulso extra musical, Partículas elementales, Los tres primeros minutos del Universo

2. Descripción

En el presente trabajo de grado se propone una búsqueda comprensiva a partir de un elemento extra musical llamado el Big Bang, utilizando específicamente el libro Los Primeros Tres Minutos del Universo por Steven Weinberg (2000). Para esto se hace uso de la línea de investigación creación debido a que está encaminada al propósito del trabajo, con respecto a dar respuesta a una serie de preguntas propuestas en cuanto a cómo extraer elementos técnicos musicales del Big Bang y a partir del mismo crear una composición dividida en cuatro movimientos que se refieren a los momentos más importantes durante los primeros tres minutos del Universo.

3. Fuentes

Secretaría General Técnica.

4. Contenidos

Partiendo de una investigación encaminada en extraer elementos técnicos musicales en el Big Bang, específicamente los primeros tres minutos del Universo, se elaboraron Herramientas concernientes a dinámicas, alturas, forma y ritmo, las cuales un tiempo después permitieron la realización de una composición formada por cuatro movimientos que simbolizan a grandes rasgos los hechos más importantes durante los primeros tres minutos del Universo. Debido a que este proceso está guiado por la línea de investigación creación, puede servir como referente a profesores, estudiantes o a quien desee informarse o profundizar en este campo.
5. Metodología

Debido a que el presente trabajo se enfoca en la línea de investigación creación, se llevó a cabo una reflexión constante en cuanto energías las herramientas técnicas y la composición final, evidenciando en las reflexiones de campo en los capítulos cuatro y cinco, en la tránsito ubicada en los anexos. La investigación es de orden cualitativo debido a que se estudió el proceso del Investigador creador a medida que proyectaba forma.

6. Conclusiones

Los elementos técnicos del discurso musical emergieron satisfactoriamente del tema extra musical, lo que permitió llevar a cabo un proceso compositivo y demostrar que no hay momento determinado para que un músico se acerque a la composición e investigue a partir de la misma.

Elaborado por: CRUZ PACHECO, ANA MILENA
Revisado por: JAIME CARVAJAL, ABELARDO

Fecha de elaboración del Resumen: 10-10-2012
ABSTRACT

The present is a degree work in where is proposed a compositional search from an extra musical element called the Big Bang, using “The three first minutes of the Universe” from Steven Weinberg (2000). For this purpose I use the Research and Investigation methodology because this routes the working purpose to find answers to a series of questions related to the extraction of technical music elements from the Big Bang, and from this create a composition divided in four moments referring the key events in the first three minutes of the Universe.

En el presente trabajo de grado se propone una búsqueda compositiva a partir de un elemento extra musical llamado el Big Bang, utilizando específicamente el libro Los Primeros Tres Minutos del Universo por Steven Weinberg (2000). Para esto se hace uso de la línea Investigación creación debido a que está encaminada al propósito del trabajo, con respecto a dar respuesta a una serie de preguntas propuestas en cuanto a cómo extraer elementos técnicos musicales del Big Bang y a partir del mismo crear una composición dividida en cuatro movimientos que se refieren a los momentos más importantes durante los primeros tres minutos del Universo.
Tabla de contenido

Introducción ... 1

1. Descripción del problema y pregunta de investigación .. 4

1.1 Pregunta de Investigación ... 6

1.2 Justificación .. 6

1.3 Objetivo general ... 7

1.4 Objetivos específicos ... 7

2. Diseño metodológico .. 8

3. Marco teórico ... 10

3.1 Acercamiento a la Investigación Artística .. 10

3.2 Acercamiento a la teoría de conjuntos y al serialismo integral .. 15

3.3 Acercamiento a la Teoría del Big Bang .. 19

4. Del Big Bang a la música ... 30

4.1 Reflexiones de campo y primer intento .. 30

4.1.1 El primer centésimo de segundo ... 31

4.1.2 Un décimo de segundo ... 34

4.1.3 Al final de los tres primeros minutos .. 36

4.2 Segundo intento y toma definitiva de decisiones ... 38

5. Los tres primeros minutos del universo .. 43
5.1 Alturas .. 44

5.1.1 Tratamiento de las alturas en Partículas elementales ... 49

5.1.2 Tratamiento de las alturas en Colisiones .. 50

5.1.3 Tratamiento de las alturas en Aniquilación .. 51

5.1.4 Tratamiento de las alturas en Vida .. 52

5.2 Ritmo ... 55

5.2.1 Tratamiento del ritmo en Partículas elementales ... 56

5.2.2 Tratamiento del ritmo en Colisiones ... 57

5.2.3 Tratamiento del ritmo en Aniquilación ... 59

5.2.4 Tratamiento del ritmo en Vida .. 62

5.3 Dinámicas ... 65

5.3.1 Tratamiento de dinámicas en Partículas elementales ... 65

5.3.2 Tratamiento de dinámicas en Colisiones .. 66

5.3.3 Tratamiento de dinámicas en Aniquilación .. 67

5.3.4 Tratamiento de dinámicas en Vida .. 67

5.4 Forma .. 68

5.4.1 Tratamiento de forma en Partículas elementales ... 68

5.4.2 Tratamiento de forma en Colisiones ... 69

5.4.3 Tratamiento de forma en Aniquilación ... 72

5.4.4 Tratamiento de forma en Vida .. 74
Conclusiones .. 78
Bibliografía .. 82
Anexos .. 84
Diario de campo .. 84
Primer intento ... 100
Resultado final ... 106

Figuras

Figura 1. López y San Cristóbal. Reelaboración gráfica del proceso y su orden en Investigación artística.. 14

Figura 2. The integer names of pitch classes (Walters, 2001) .. 16

Figura 3. Webern, op. 3, no. 1, mm. 4-6. Pitch intervals (Walters, 2001) ... 16

Figura 4. 12 Primeras notas del material pre composicional del "Mode de valeurs el d'intensités", con sus respectivas duraciones, ataques y dinámicas. Tabla XVI-A (P. Morgan, 1999) .. 19

Figura 5. Espectro electromagnético (Frank, 2006) ... 24

Figura 6. Radiación de doño de microondas (NASA, 2014) ... 26

Figura 7. Electrones, positrones y neutrinos ... 32

Figura 8. Densidad energética elevándose cada vez más.. 33

Figura 9. La gran explosión, toda partícula se aleja de toda otra partícula, densidad y temperatura extremadamente altas.. 34
Figura 10. Aniquilación entre electrones y positrones ... 35
Figura 11. Aumento de colisiones y temperatura en descenso constante .. 35
Figura 12. Hidrógeno ... 36
Figura 13. Helio ... 37
Figura 14. Neutrinos y antineutrinos ... 37
Figura 15. Primeros núcleos del Universo primitivo. Isótopos de Hidrógeno y Helio (IAEA, 2009 - 2018) .. 43
Figura 16. Partículas y antipartículas ... 44
Figura 17. Reacciones .. 45
Figura 18. Fotón (Y) = 0 .. 46
Figura 19. Electrón (e-) = +1, Positrón (e+) = -1 .. 47
Figura 20. Protón (P) = +3, Antineutrino (ν) = -2 ... 47
Figura 21. Neutrino (V) = +2, Neutrón (n) = +4. (Versión final de partículas y notas) 48
Figura 22. Partículas elementales y notas en el primer movimiento .. 50
Figura 23. Colisiones entre partículas 1 .. 50
Figura 24. Colisiones entre partículas .. 51
Figura 25. Algunos de los intervalos que representan colisiones en el segundo movimiento 51
Figura 26. Algunos de los intervalos de 3a Dim, 6a Aum y Oct que representan los choques en el tercer movimiento .. 52
Figura 27. Núcleos y acordes característicos ... 53
Figura 28. Representación de algunos núcleos en el cuarto movimiento 55
Figura 29. Exposición de partículas elementales .. 56
Figura 30. Duración asignada a notas elementales, utilizada en los movimientos 1 y 3 57
Figura 31. Exposición de partículas elementales, con notas y duraciones asignadas, según figura 26

Figura 32. Matices agógicos relacionados con reacciones recurrentes entre partículas, colisiones y resultados

Figura 33. Exposición de colisiones y reacciones

Figura 34. Motivo principal. Duraciones de notas según Figura 26 y exposición de choques entre electrones y positrones

Figura 35. Motivo principal alterado

Figura 36. Exposición de colisiones entre fotones 1

Figura 37. Exposición de colisiones entre fotones 2

Figura 38. Variaciones del motivo principal y énfasis en la frecuencia de colisiones entre electrones y positrones

Figura 39. Inicio del Cuarto movimiento (Helio 4)

Figura 40. Baja cohesión del Tritio, pasados 13, 84 segundos después de la gran explosión

Figura 41. Baja cohesión del Helio 3 pasados 13, 82 segundos después de la gran explosión

Figura 42. Cohesión muy débil del Deuterio, pasados 13, 82 segundos después de la gran explosión

Tablas

Tabla 1. Principales reacciones entre partículas después del primer centésimo de segundo

Tabla 2. Partículas y números característicos

Tabla 3. Acordes y núcleos
Tabla 4. Palabras clave para el análisis de la forma en Partículas elementales 69
Tabla 5. Forma, Análisis de Partículas elementales .. 69
Tabla 6. Palabras clave para el análisis de la forma en Colisiones 71
Tabla 7. Forma, Análisis de Colisiones .. 71
Tabla 8. Palabras clave para el análisis de la forma en Aniquilación 73
Tabla 9. Forma, Análisis de Aniquilación ... 74
Tabla 10. Palabras clave para el análisis de la forma en Vida ... 76
Tabla 11. Análisis de Vida .. 77
Introducción

El presente trabajo constituye un proceso de investigación artística en el área de la composición musical y está basado en un elemento externo llamado, “Los tres primeros minutos del universo” por (Weinberg, 2000).

El proceso investigativo emergió ante la necesidad de encontrar o desarrollar herramientas compositivas que permitieran realizar una composición a partir de dicho impulso extra musical. En consecuencia, el trabajo se centró en problemáticas artísticas con las cuales me enfrenté en mi búsqueda personal como compositora, reflexionando acerca de las habilidades, elementos técnicos y criterios que en el campo de la creación musical, apropié en el transcurso de mis estudios musicales.

Con la determinación de hallar una respuesta a mis interrogantes, me dispuse a leer sobre la investigación artística, el cual es uno de los elementos más importantes y parte fundamental de este proceso debido a que durante el transcurso de la composición, la imaginación y reflexión, componentes importantes del método Investigación - Creación (Daza Cuartas, 2009), son primordiales en la búsqueda de elementos técnicos musicales a partir de la incertidumbre, prueba y error.

El trabajo se divide en 5 capítulos. El primero, se enfoca en el problema a nivel compositivo y la pregunta problematizadora que dio pie a la investigación; la justificación en cuanto a la necesidad de llevar a cabo un proceso de investigación artística, encaminado a la composición musical; y los objetivos principales a desarrollar durante la marcha.
El capítulo dos se refiere al diseño metodológico como procedimiento del proceso creativo, el cual sirvió de estrategia para alcanzar los objetivos y dar respuesta a la pregunta de investigación.

El capítulo tres, se relaciona con el marco teórico en el cual se describen elementos característicos de la investigación artística, vinculados con la búsqueda de nuevos caminos en la exploración artística, la reflexión continua que esto conlleva, la construcción de un discurso que busca aportar ideas nuevas al arte de hoy en día y a la música específicamente en este trabajo. En este marco se utilizan ideas de Investigación Artística en Música por (López Cano & San Cristóbal, 2014), Bases para un Debate Sobre Investigación Artística de (Gómez Muntané, Hernández Hernández, & Pérez López, 2006), e Investigación Creación, un Acercamiento a la Investigación en las artes por (Daza Cuartas, 2009).

Desde el ámbito técnico musical se abordan la teoría de conjuntos y el serialismo integral, relacionados con la composición y análisis musical del siglo XX, en cuanto a uso de notas y duraciones, que luego inspirarían la realización de la composición final. Esto se fundamenta en A Brief Introduction to Pitch-Class Set Analysis por David (Walters, 2001) y La música del siglo XX por (P. Morgan, 1999).

Además se incluye la Teoría del Big Bang, en la que se hace una aproximación a los descubrimientos que le dieron más peso, como el corrimiento al rojo y el fondo de radiación de microondas. También se hace un resumen de lo que posiblemente ocurrió durante los primeros tres minutos del universo. Todo esto soportado en el libro, Los tres primeros minutos del Universo por Steven (Weinberg, Los Tres Primeros Minutos del Universo, 2000).
En el capítulo cuatro se describe detalladamente el proceso compositivo, que comprende el paso del Big Bang a la música. Se expone el primer intento compositivo, describiendo cómo, en aquel momento, se abordó el proceso creativo en relación con el impulso musical ya referenciado.

A continuación se presenta el segundo intento compositivo que representó la toma definitiva de decisiones relacionadas con la manera en la cual, dentro del proceso de investigación artística, se introdujeron a la música los eventos más importantes del universo primitivo en una obra para piano titulada Los tres primeros minutos del Universo.

A partir de esto se hace un análisis detallado de la composición, en el capítulo cinco, que comprende elementos técnicos musicales como alturas, ritmo, dinámicas y forma, desarrollando algunos aspectos inspirados en los referentes técnicos musicales anteriormente reseñados (Walters, 2001) y (P. Morgan, 1999).

Finalmente, se incluyen las conclusiones derivadas del proceso compositivo, la bibliografía consultada y los anexos, en los que se añade el diario de campo, las partituras del primer intento compositivo y del resultado final.
1. Descripción del problema y pregunta de investigación

Recuerdo que mucho antes de ingresar a la Universidad, uno de mis tantos sueños era componer alguna pieza musical utilizando los conocimientos que aprendería más adelante. Pasó el tiempo y aunque ya llevaba un tiempo considerable estudiando música, pocas veces tuve la posibilidad de realizar una composición.

Cuando se presentó la ocasión hubo muchas dudas sobre las técnicas que pueden ser utilizadas y las habilidades faltantes; al ver estas dificultades surgió el desánimo. Arribando al sexto semestre del pregrado empecé a ver la materia, Paradigmas de la Educación, en la que estuve reflexionando sobre cómo aprendí conceptos instrumentales y gramaticales, en ocasiones, haciendo uso de métodos relacionados con la escuela tradicional, en la que el maestro poseedor del conocimiento es la única fuente de aprendizaje en la materia que dicta, abordando conceptos complejos y desconocidos para algunos estudiantes, que solo los perciben como abstractos y repetitivos, pertenecientes a la teoría que generalmente antecede a la práctica (Valencia Mendoza, 2014).

Después de esto me instruí en algunas metodologías y pude observar que existen otras opciones en las que se propone un aprendizaje durante la acción. Entre ellas está la Escuela Activa en la que el estudiante, al igual que el profesor, hace un aporte a su aprendizaje a partir de sus propios intereses y necesidades. Este se desarrolla de lo conocido a lo desconocido, fundamentándose en las vivencias consientes del conocimiento (Valencia Mendoza, 2014, pág. 12).

Si principios como estos se incorporaran a la enseñanza musical en etapas tempranas, en las que se enseñan elementos de apropiación e interpretación musical, se aprenderían principios técnicos del discurso musical relacionados con la creatividad y reflexión. Los estudiantes no solo memorizarían normas de armonía y un sin fin de melodías cortas dirigidas al solfeo, sino
encontrarían útil la funcionalidad que hay en la armonía y el solfeo. Posiblemente esto los embarcaría más adelante o durante su aprendizaje en la búsqueda de su propia expresión artística. Lo mismo pasaría con el instrumento, la gramática y demás materias relacionadas con la enseñanza de la música.

Así mismo, en tiempos recientes se viene adelantando un debate acerca de la investigación artística, abriendo nuevos caminos en cuanto al aprendizaje en artes. Es interesante ver músicos atraídos por este campo debido a que en general no se asocia a las artes con la investigación, porque se considera que no deben argumentar sobre lo que hacen (Daza Cuartas, 2009, pág. 91).

Teniendo en cuenta lo anterior, el siguiente trabajo plantea la posibilidad de acceder a la composición desde un factor investigativo, partiendo de mi interés particular y un elemento extra musical. Como músico dispongo de conocimientos previos respecto a gramática, armonía, análisis, historia, técnicas instrumentales de piano, entre otros pertenecientes a la disciplina musical. Además he tenido la oportunidad de componer piezas cortas en la optativa de Composición, dando gran importancia a la creatividad. Estos son factores importantes para un investigador creador (López Cano & San Cristóbal, 2014).

Es necesario realizar la documentación de este proceso por si en algún momento un estudiante de música se plantea la misma problemática y necesita referentes. Además se incluye la necesidad de un profesor con preguntas similares y que sin duda en algún momento necesitará de la composición en su ámbito laboral para enseñar los elementos que considere pertinentes.

Con base en lo anterior se definió la siguiente pregunta de investigación:
1.1 Pregunta de Investigación

¿Cómo abordar un acto creativo que amplíe mis conocimientos y desencadene un proceso compositivo a partir de un impulso extra musical?

1.2 Justificación

Debido a que desde el principio de mis estudios musicales he podido percibir una carencia personal en cuanto a posibilidades compositivas, durante los momentos de la enseñanza en los que se aprenden elementos de apropiación musical, me aventuré en la experimentación. Ya que no contaba con una formula exacta de lo que iba a realizar fui en busca de ella e intenté demostrar que no hay momento determinado para que cualquier músico, poseedor de poca o mucha experiencia, se encuentre frente a frente con la composición y la lleve a cabo. La palabra “formula” se refiere a un método compositivo riguroso sobre el cual podría basarme. Por lo tanto, si algún estudiante desea indagar en el campo musical desde un ámbito investigativo puede tomar el presente trabajo de referencia.

Como fundamento se empleó el enfoque de Investigación Artística y por esta razón se hace mención de autores como Rubén López Cano, Úrsula San Cristóbal, Maricarmen Gómez Muntané, Fernando Hernández Hernández, Héctor Julio Pérez López y Sandra Liliana Daza Cuartas, los cuales buscan sintetizar y definir elementos relacionados con la misma.

Es necesario mencionar que el proceso y resultado final tuvieron origen en un tema extra musical llamado la Teoría del Big Bang, del cual surgieron los elementos técnico-expresivos del del proceso compositivo, sin dejar a un lado la espontaneidad del compositor. Este tema se orientó
principalmente en el libro, Los Tres Primeros Minutos del Universo por (Weinberg, Los Tres Primeros Minutos del Universo, 2000).

Otras herramientas primordiales que encontré fueron: Mi formación previa en la Licenciatura en música de la Universidad Pedagógica Nacional de Colombia y la materia Composición-formación orientada por el Maestro Victoriano Valencia, de suma importancia para mí durante el pregrado. A medida que el proceso avanzó escribí un diario de campo y realizó reflexiones de campo, relacionadas con la toma de decisiones durante el desarrollo de la composición. Una parte se ubica en el cuarto y quinto capítulo mientras que la otra se encuentra en los anexos, realizando la importante tarea de evidenciar la experiencia (Gómez Muntané, Hernández Hernández, & Pérez López, 2006, pág. 15), para finalmente concluir la eficacia o inutilidad del trabajo en cuanto a experimentar de forma diferente el aprender a componer.

Se espera que este proceso muestre una notable diferencia entre los conocimientos que traía y los que adquirí, para de esta forma presentar la educación musical desde otra perspectiva, aportando de algún modo al campo de Investigación Artística.

1.3 Objetivo general

Documentar un acto de investigación-creación derivado de un impulso extra musical, en el que se desencadene una composición titulada: Los tres primeros minutos del Universo.

1.4 Objetivos específicos

- Generar y/o definir elementos técnicos del discurso musical en la interacción entre el referente extra musical y la obra en composición, tales como alturas, ritmo, aspectos técnico-expresivos y forma.
• Construir un proceso compositivo a partir de un impulso extra musical: el Big Bang, específicamente desde el libro: Los primeros tres minutos del universo de Steven Weinberg (2000).
• Sistematizar el proceso evidenciable en un cuaderno de campo.

2. Diseño metodológico

Basando mis acciones en motivaciones y significados individuales, leí en diversas fuentes lo que pudo haber sido el comienzo de todo lo existente, encontrándome con la Teoría del Big Bang, la cual me serviría para entender lo que posiblemente ocurrió durante los primeros tres minutos del Universo. Lo que aconteció después fue una avalancha de preguntas y la inevitable necesidad de respuestas. Algunas de estas me ayudaron a comprender determinados aspectos sobre el Universo y otras me permitieron encontrar piezas que podría utilizar en la composición. No fue una búsqueda sencilla debido a que por unos cuantos meses no hallé la forma de relacionar a la música con este hecho, sin embargo al final fue posible y satisfactorio vincularla.

Una parte de la composición se fundamentó en elementos reflexivos que dieron origen a ideas musicales y otra parte se basó en la imprescindible imaginación. Estas dos características son importantes para un investigador creador, pues según Daza, es necesario llevar a cabo un proceso imaginativo y un registro reflexivo, para que de este modo el método de investigación – creación sea válido (Daza Cuartas, 2009). Durante el tiempo de lectura y composición llevé nota de datos en un diario de campo, lo que me sirvió para reflexionar durante el transcurso de mi búsqueda.

A medida que la investigación avanzaba utilicé el método cualitativo, realizando una observación participante, debido a que según López y San Cristóbal (2014), estudié mi proceso y posibilidades compositivas a partir de un elemento extra musical (pág. 112).
La composición se logró progresivamente de acuerdo a la información recopilada en el cuaderno de campo, elemento importante para Lopez y San Cristobal (2014), porque contenía descripciones de los fenómenos observados y registro de los sentimientos que aparecían en el camino (pág. 110).

El diario de campo, que está mayormente vinculado a las notas de nivel subjetivo, se encuentra en los anexos. Los elementos reflexivos, hipótesis y estrategias, pertenecientes a las reflexiones de campo, se encuentran en los capítulos cuatro y cinco. También fue pertinente la revisión constante de estas notas para elaborar ideas y preguntas sobre lo que ocurría. La experiencia observable y las evidencias son trascendentales en la realización de una investigación (Gómez Muntané, Hernández Hernández, & Pérez López, 2006).

El enfoque de este trabajo fue la Investigación Artística debido a que estuve en búsqueda de problemas y posibles soluciones a partir de la reflexión crítica y continua (López Cano & San Cristóbal, 2014), durante la creación de una composición basada en los primeros minutos del Big Bang.

Durante este proceso hice uso de varios textos, entre los cuales destacaron los siguientes: Los Tres Primeros Minutos del Universo (Weinberg, 2000), Investigación Artística en Música (López Cano & San Cristóbal, 2014), Investigación Creación, un Acercamiento a la Investigación en las artes (Daza Cuartas, 2009), Bases para un Debate Sobre Investigación Artística (Gómez Muntané, Hernández Hernández, & Pérez López, 2006), La Música del Siglo XX (P. Morgan, 1999) y Brief Introduction to Pitch-Class Set Analysis (Walters, 2001)

Todo el proceso durante esta investigación se realizó con el fin de construir una propuesta de creación propia, un aporte personal a la música y al aprendizaje de esta.
Considero pertinente la realización de este trabajo debido a que el enfoque de mis estudios es la enseñanza musical y veo de gran utilidad el área de composición para mí o cualquier otro futuro profesor que desee incursionar en este campo.

En cuanto al método, se utilizó la Auto etnografía, haciendo referencia al registro de lo observado y percibido por mí como investigadora, describiendo y analizando sistemáticamente la experiencia personal para comprender aspectos relacionados con el proceso de Investigación Artística (López Cano & San Cristóbal, 2014).

3. Marco teórico

3.1 Acercamiento a la Investigación Artística

Parafraseando a López y San Cristóbal (2014), la investigación artística es el campo académico que ofrece la opción de ir tras aquello que los artistas no conocemos, explorando nuevos caminos y respuestas a nuestras preguntas. No es extraño encontrar estudiantes de música alejados de este campo, muchas veces por falta de información o por parecer confuso y lejano. Sin embargo según estos autores, existen acercamientos e iniciativas como el Pódium Festival de Esslingen, plataformas como Emusicarte y un gran número de intentos que dan cabida a nuevas propuestas con el fin de mostrar a los músicos que cuentan con la investigación como una de las tantas opciones existentes para desarrollar sus conocimientos (pág. 13).

Steyerl, como se citó en (López Cano & San Cristóbal, 2014)

“En 1984 se inaugura uno de los primeros programas de doctorado en investigación artística en Australia. En Europa en cambio, las primeras iniciativas surgen en la década de 1990, de la mano de publicaciones como Research in Art
and Design (1993) de Christopher Frayling y de la fundación en 1997 de un programa académico en investigación artística en la Kuvataideakatemia de Helsinki, Finlandia. En 1999 se echa a andar el Plan Bolonia, y desde entonces se han sucedido un sinfín de publicaciones, congresos, debates, programas educativos, proyectos de discusión y grupos de trabajo” (pág. 29)

Por otro lado, la investigación artística se ha enfrentado a la pregunta de cómo transformar profundamente los modos de enseñanza superior en artes (López Cano & San Cristóbal, 2014), sin embargo no ha llegado a respuestas claras, debido a que según Daza (2009), es común escuchar que los artistas no deben argumentar sobre lo que hacen (pág. 91). Por esto, López y San Cristóbal (2014) afirman que en ocasiones algunos individuos han juzgado a la Investigación artística de ser un medio más para obtener ganancias y rentabilizar las artes (pág. 28). Incluso se han referido a esta como una última herramienta para profesores con bajo desarrollo artístico pero alto nivel de discurso y títulos. Sin embargo es importante destacar que vista desde otras perspectivas es una gran oportunidad de transformación, porque se defiende al arte como productor de conocimientos equiparables en importancia al campo científico.

Aunque se ha sistematizado información concerniente a este campo, no es fácil encontrar en los escritos resultantes discusiones sobre la naturaleza del conocimiento producido por las artes debido a que no hay metodologías normalizadas. Consecuentemente las ideas terminan siendo discursos sumamente abstractos y complejos, relacionados con consideraciones un tanto lejanas al músico o artista común. Este problema trae consigo un gran porcentaje de discursos que se lleva el viento y no se hace un esfuerzo notorio en publicar los trabajos que ya se han escrito, basados en este
campo. Según Gómez, Hernández y Pérez (2006) el impacto de cualquier investigación se da a conocer por medio de sus publicaciones y posteriores citas, refiriéndose a la misma (pág. 16).

Además de lo anteriormente escrito, algo que ha interferido a la hora de legitimar la actividad artística como una verdadera instancia productora de conocimiento, es el querer lograr que en su discurso se resuelvan rápidamente problemas de ámbito académico, político, administrativo, entre otros muy complejos, como lo mencionan López y San Cristóbal (2014), pues se abordan temas relacionados con abogar por el derecho de las artes a pertenecer a un sistema educativo que prioriza los criterios científicos, asumir modelos de trabajo académico preestablecidos que posibiliten lo anterior, intentar que esos modelos no perturben las tradiciones de la academia artística o los conservatorios de música, asimilar autores y teorías que permitan a los artistas expresarse en términos académicos e intentar que los estudiantes de artes asuman terminología académica ajena y poco estimulante para ellos (págs. 34, 35).

Al final, quien está interesado en este campo se encuentra con un sinfín de preguntas y pocas respuestas en cuanto a los pasos que debería seguir para trabajar en lo que desea. De esta forma infiero que termina buscando lo que considera correcto y finalmente construye sus propios paradigmas, pensando que es agotador conocer las premisas básicas de este campo o definir sus objetivos de estudio, métodos o modos de presentar resultados.

En medio de esto también se encuentran personas que preguntan erróneamente si toda labor artística es una actividad de investigación. Al final dan con una respuesta negativa debido a que debe haber un pensamiento crítico sobre lo que se hace y las decisiones que se toman en el camino. Esto exige algo más profundo que tocar un instrumento sin mucho análisis e interrogantes que la anteceden (López Cano & San Cristóbal, 2014).
Si un músico es consciente de esto y pretende incorporarse en el ámbito investigativo, deberá seguir lo descrito por López y San Cristóbal (2014) y estar dispuesto a trabajar en pro de un nuevo perfil de artista caracterizado por la reflexión continua sobre su propia práctica artística y la problematización de aspectos en su actividad para ofrecer diagnósticos, análisis, reflexiones y soluciones. Debe trabajar en la construcción de un discurso sobre su propuesta artística y lo que aporta a la música de nuestros días, al mismo tiempo que abandona su zona de confort para ingresar a un ámbito lleno de interrogantes e incertidumbres en el que reina la discusión constante de conocimientos cambiantes y transferibles (págs. 36, 37). El objetivo no se agota en el saber generado por la obra, sino en la reflexión crítica de diferentes elementos en la práctica artística como el proceso creativo, las rutinas de estudio y las influencias teóricas y prácticas. En pocas palabras se trata de un estudio en profundidad y sistemático que obtiene y comunica resultados, siendo elaborado conscientemente. De hecho el proceso ocupa un lugar más importante que el resultado final. Quién esté dispuesto a esto debe definir una serie de preguntas o problemas que irá resolviendo durante su investigación, además de especificar por qué es importante y los métodos que empleará. Al final debe demostrar de dónde surgió el conocimiento nuevo (López Cano & San Cristóbal, 2014).

Las preguntas de investigación pueden ir dirigidas a problemas de la práctica artística interpretativa o compositiva, considerando técnicas instrumentales o intenciones creativas del compositor instrumentista. Por esto es importante aclarar que la investigación artística solo puede ser desarrollada por un artista práctico, ya sea que ejerza como docente o practicante en un conservatorio. Si las preguntas vienen de un musicólogo, historiador o alguien que no ejerce como compositor o interprete práctico, probablemente no se trata de investigación creación (López Cano & San Cristóbal, 2014).
Según Gómez, Hernández y Pérez (2006), al igual que en la investigación científica la experiencia debe ser observable y verificable (pág. 15); por esta razón todo concepto que no presente evidencias no es considerado serio. Se deben observar los hechos significativos y plantear hipótesis que los expliquen y pongan a prueba mediante la observación. En este punto el cuaderno de campo se vuelve importante, pues es allí donde archivamos todo el proceso, los avances, toma de decisiones e incluso pensamientos y frustraciones (López Cano & San Cristóbal, 2014).

A continuación se muestra una gráfica del orden aleatorio en el cual se lleva a cabo un proyecto de investigación artística según el maestro Victoriano Valencia en una clase de composición durante el segundo semestre del año 2016:

![Diagrama de proceso de investigación artística](image)

Figura 1. López y San Cristóbal. Reelaboración gráfica del proceso y su orden en Investigación artística
3.2 Acercamiento a la teoría de conjuntos y al serialismo integral

Con referencia a lo mencionado en el primer capítulo, este trabajo busca encontrar elementos musicales como: Alturas, ritmo, dinámicas y forma, necesarios para llevar a cabo un proceso compositivo basado en la teoría del Big Bang. Considerando lo anterior utilicé algunos fundamentos relacionados con la teoría de conjuntos, tomando como guía A Brief Introduction to Pitch-Class Set Analysis (Walters, 2001).

La música tonal, escrita principalmente entre 1650 y 1900, comprende a la misma como una estructura general que forma escalas y acordes funcionales, los cuales giran en torno a un centro o nota específica (Walters, 2001); un ejemplo claro es Amadeus Mozart con Sonata para piano n. 1 en do mayor (1774). No obstante en el siglo XX surgen ideas que apuestan por cambiar algunos de estos paradigmas compositivos. Es así que emergen compositores como Anton Webern con intereses compositivos enfocados en notas particulares equivalentes entre sí, sin darle importancia a un centro tonal específico (Walters, 2001). Un ejemplo de esto es Webern (1936) con Variations for piano, op. 27.

La teoría de conjuntos tiene algunos conceptos específicos que ayudan en el análisis de obras concernientes con este tema. Uno de ellos es la Equivalencia de Octavas, en la cual todas las notas con el mismo nombre equivalen a una sola sin importar la octava en que se encuentren. De esta forma Mi, representa al Mi de la primera, tercera, cuarta, quinta o cualquier otra octava del piano.

La Equivalencia Enarmónica reduce las 21 notas, generalmente conocidas por los músicos, a 12, relacionando sus ubicaciones. Es entonces que un D# es igual a un Eb, un F# es igual a un Gb, y así sucesivamente. Por último, a cada una de las notas se le asigna un número de 0 a 11. A esto se le llama Notación integral (Walters, 2001).
Además, en teoría de conjuntos se asignan determinados números positivos o negativos a intervalos ascendentes o descendentes, según sea su dirección melódica. Se pueden utilizar semitonos ascendentes desde la nota en concreto, escribiendo un signo positivo y el número de estos a su derecha y también utilizar semitonos descendentes a partir de una nota en concreto, escribiendo un signo negativo y el número de estos a su derecha (Walters, 2001).

En el ejemplo, si miramos el compás 1, del sol al fa# descendente hay un semitono escrito como -1, sin embargo en el compás 3 también hay un semitono entre el sol y el sol# al que se le asigna +1 por ser ascendente.

Una forma diferente de analizar los intervalos es usar el Módulo 12, sin embargo yo utilicé Pitch intervals como guía en el momento de asignar alturas y establecer notas para la composición final.
Desde una perspectiva histórica, el espíritu compositivo después de la segunda guerra mundial invadió a los jóvenes de aquella época. Ellos pensaban que la música occidental tradicional estaba ligada a los fracasos políticos y sociales del pasado. Si iba a surgir un mundo diferente después de la segunda guerra mundial debía crearse un tipo de música diferente (P. Morgan, 1999, pág. 353).

Es así como resultó el Serialismo Integral.

Uno de estos compositores fue Pierre Boulez, quien buscó replantear la música y hacer una crítica a otros compositores del siglo XX por no haber desarrollado aún más sus inventos musicales como Schoenberg con su sistema dodecafónico. Boulez declaró que las series no solo podían tratarse melódicamente sino también en los elementos rítmicos, dinámicos y texturas (P. Morgan, 1999, pág. 354).

Como vimos anteriormente en Pitch Classes (Walters, 2001), Anton Webern, quien lastimosamente fue ignorado en vida, también hacía parte de un equipo revolucionario musical. Boulez sentía gran admiración por él y esto se puede apreciar en una de sus declaraciones cuando dijo:

Boulez, como se citó en Morgan (1999)

“Él fue el único que tuvo conciencia de una nueva dimensión del sonido, de la desaparición de la oposición entre lo horizontal y lo vertical (por ejemplo, entre la tradicional distinción existente entre armonía y melodía) por lo que, lo único que vio en las series, fue una forma de proporcionar una estructura al espacio sonoro” (pág. 354).
Por otra parte, Olivier Messiaen refleja esta tendencia, al tratar características del sonido musical como la melodía, ritmo, dinámica y timbre, individualmente. Él escoge cambiar los conceptos de medida y compás por el sentido de un valor corto como la semicorchea y su libre multiplicación. Cambiando los valores, aumentando o disminuyendo esta figura.

Según Morgan (1999), para Messiaen sus composiciones no buscan imitar los sonidos de la naturaleza sino transformarlos y darles un significado musical (Escuchar Le Réveil des Oiseaux 1953). Para él la música no es un medio de expresión personal sino la materialización “objetiva” de la belleza y perfección del Universo (pág. 357).

Continuando con Boulez, a sus 20 años contaba con una amplia formación matemática y musical, lo que le daba una perspectiva musical más lógica que expresiva. Morgan (1999) indica que Boulez construyó dos tablas numéricas con las primeras 12 notas del material precomposicional del “Mode de valeurs el d’intensités” (pág. 362), asignando a cada una de ellas una duración rítmica concreta. Además de esto, cada nota contaba con un ataque y dinámica específica. Cuando llegó a este punto, la música básicamente tomó el control de su propia escritura (P. Morgan, 1999, pág. 363). En este principio me basé para escribir una parte del primer y tercer movimiento de Los Tres Primeros Minutos del Universo cuyo proceso esta descrito en el capítulo 5.
3.3 Acercamiento a la Teoría del Big Bang

Desde tiempos lejanos el hombre ha tratado de explicar el significado de su existencia y la forma en que fueron creadas todas las cosas. En consecuencia se han elaborado diferentes mitos y teorías relacionadas con la creación u origen del Universo. A un ejemplo de tantos se refiere (Weinberg, 2000), cuando habla sobre el Edda y su explicación del origen del universo (pág. 15). El modelo corriente, popularmente conocido como la teoría del Big Bang, busca explicar el origen del universo, según afirma Weinberg (2000), basado en datos empíricos y no bajo preferencias filosóficas (pág. 19).

No se puede afirmar contundentemente que esta teoría seguirá vigente por siempre, sin embargo gracias a ella se han podido descubrir elementos como el alejamiento de las galaxias distantes y una débil electricidad radio estática que se percibe en todo el universo conocido (Weinberg, 2000).
Una de las fichas faltantes en este rompecabezas y una de las preguntas más difíciles de responder es ¿qué sucedió antes de la gran explosión?

El primer problema al querer saber qué pasó a más de 100.000 millones de grados Kelvin son las interacciones fuertes de las partículas elementales. Con esto se hace referencia a una fuerza de alcance aún más corto que la encargada de mantener unidos los protones a los neutrones en el núcleo atómico.

“Es la intensidad de las interacciones fuertes lo que las hace mucho más difíciles de tratar matemáticamente que las interacciones electromagnéticas” (Weinberg, 2000, pág. 116)

Existen algunas opiniones acerca de lo que pasó antes del primer centésimo de segundo y Weinberg (2000) está de acuerdo con la versión original de la teoría del quark, por Murray Gell-Mann y George Zweig, la cual dice que a una temperatura de varios millones de grados Kelvin los hadrones, entre los que se encuentran las partículas nucleares y mesones pi, se desmenuzaron en sus quarks constituyentes. Sería un proceso similar al de llevar un átomo a temperaturas muy altas, en las que se dividiría en electrones y núcleos separados. Unos miles de grados después los núcleos se desmenuzarían en protones y neutrones.

Esto sugiere que en tiempos muy primitivos el Universo debió estar constituido por partículas elementales como fotones, leptones, anti leptones, quarks y anti quarks, las cuales se comportaban como partículas libres en una sopa de densidad y temperatura infinitas (pág. 120).

Apoyando esta idea, (Weinberg, 2000) hace mención de Hugh David Politzer, David Gross y Frank Wilcek, quienes demostraron matemáticamente que las fuerzas entre quarks se hacen más débiles a medida que estos se acercan; a esto se le llama libertad asintótica. Entonces a distancias
asintóticamente cortas o energías asintóticamente elevadas los quarks se comportan como partículas libres (pág. 121).

Aunque en un principio partículas como las anteriormente descritas reinaban en el universo primitivo, Según afirma Weinberg (2000), al final de los primeros tres minutos, la mayor parte de energía del Universo tenía forma de radiación y no de masa. Algún tiempo después, cuando la radiación empezó a expandirse, la longitud de onda de cada fotón se estiró produciendo un corrimiento al rojo. Esto se debe a que la longitud de onda media de la radiación de un cuerpo negro es inversamente proporcional a la temperatura, así que como esta descendía, el resultado eran longitudes de onda cada vez más largas (pág. 74). Más adelante explicaré brevemente qué es el corrimiento al rojo y por qué es tan importante mencionarlo.

Esto significa que cuando el universo era 10.000 veces menor que ahora y los fotones estaban aún muy juntos la temperatura fue proporcionalmente mayor, aproximadamente unos 30.000 °K. En aquél entonces las colisiones entre fotones producían materia a partir de la energía pura. Dos cuantos de radiación o fotones pueden chocar y desaparecer, la energía y momento resultantes producen dos o más partículas materiales (Weinberg, 2000, pág. 75).

Weinberg (2000) señala que según la teoría de la relatividad, una partícula material en reposo tiene cierta energía en reposo y es aquí cuando la ecuación $E=mc^2$ se vuelve importante. Para que dos fotones produzcan dos partículas materiales de masa m en un choque frontal, la energía de cada fotón debe ser igual a la energía en reposo mc^2 (masa por velocidad de la luz al cuadrado) de cada partícula. También ocurre si la energía de los fotones individuales es mayor que mc^2. La energía sobrante le da mayor velocidad a las partículas materiales. Si la energía es inferior este proceso no es posible (pág. 75).
Cuando la temperatura y densidad del universo primitivo eran tan elevadas el número de partículas dependía del equilibrio térmico. Es difícil imaginar la cantidad de partículas que se destruían al mismo tiempo que se creaban. La velocidad de aniquilación entre partícula y antipartícula para dar como resultado dos fotones es aproximada a la que un par de fotones con la misma energía se convertían en una partícula y antipartícula semejantes.

“El equilibrio térmico exige que el número de partículas de cada tipo, cuyo umbral de temperatura esté por debajo de la temperatura real, sea aproximadamente igual al número de fotones; si hay más partículas que fotones, serán destruidas más rápidamente de lo que son creadas, y su número disminuirá. Por ejemplo, a temperaturas por encima del umbral de 6.000 millones de grados kelvin, el número de electrones y positrones debe haber sido aproximadamente el mismo que el de fotones, y puede considerarse que por entonces el Universo estaba compuesto predominantemente de fotones, electrones y positrones, y no de fotones solamente” (Weinberg, 2000, pág. 78).

Sin embargo Weinberg (2000) advierte que si antes de los 1.000 millones de grados kelvin hubiese existido exactamente la misma cantidad de partículas y antipartículas, al bajar la temperatura todas estas se habrían extinguido. Por esto es posible que haya existido un exceso de partículas sobre antipartículas. De este modo luego de la aniquilación quedó algo de materia para formar el universo actual (pág. 81).

Como se mencionó con anterioridad, la Temperatura desciende a medida que el universo se expande. Un ejemplo de este fenómeno es señalado por Weinberg (2000), en el que la temperatura inicial del universo es de 100.000.000 de grados kelvin, la cual necesita 0,6 años para que la
temperatura caiga a 10.000.000 de grados, 6 años más para descender a 1.000.000 de grados y así sucesivamente. Se necesitaron 700.000 años para que el universo pasara de 100.000.000° K a 3.000° K, lo que le permitía ser transparente a la radiación (pág. 80).

 Esto nos lleva a un descubrimiento importante que le dio peso a la teoría del Big Bang, en cuanto a la afirmación de que el universo se expande. Ocurrió a finales de 1920 cuando Edwin Hubble observó que las galaxias se alejaban de nosotros (Weinberg, 2000). Para aclarar mejor este tema es necesario hablar sobre el Efecto Doppler, así que empezaré explicando algunas cosas relacionadas con el mismo.

 Cuando una onda sonora o luminosa es emitida desde una fuente inmóvil, su longitud de onda y frecuencia es siempre igual para el receptor, sin embargo, si la fuente se aleja parecerá tener una longitud de onda mayor. Si fuera al contrario, la longitud de onda parecerá menor. Es importante aclarar que la fuente siempre emite una onda de longitud determinada que se percibe diferente si el emisor se acerca o se aleja debido a que le toma más o menos tiempo para llegar a su destino (Weinberg, 2000, pág. 22).

 Imagina que estás jugando con alguien más y la otra persona te lanza una pelota diferente en cada tiro. Al principio están a un metro de distancia y ninguno se mueve de su sitio, así que todas llegan a tus manos en un tiempo similar. Después de algunos minutos la otra persona empieza a alejarse y tú sigues en el mismo sitio. Entonces percibes que la pelota cada vez se demora más en llegar. Esto se debe a que recorre progresivamente una mayor distancia; lo mismo sucede con la luz.
Si una estrella se aleja de la tierra, cada cresta debe recorrer una distancia mayor cada vez y disminuirá su frecuencia, además su emisión de luz tenderá al rojo. Si se acerca, la luz que emite tenderá al azul (Weinberg, 2000).

Mi profesora de astronomía general, durante el primer semestre de 2017, me explicó que en ocasiones la luz es invisible para nuestros ojos y no podemos vincularla a colores específicos. Decir que la luz tiende al rojo o al azul, simplemente es un uso que se le da para establecer que si se acerca o se aleja cada cresta recorrerá una distancia menor o mayor cada vez y aumentará o disminuirá su frecuencia.

Considerando lo anterior, la luz roja percibida de muchos cuerpos celestes tiene una longitud de onda mayor que la longitud de onda media de la luz visible. Si una estrella se aleja se verá notablemente “más roja” que el promedio.

![Figura 5. Espectro electromagnético (Frank, 2006)](image)

El efecto Doppler tomó importancia para los astrónomos en 1868 cuando Sir William Huggins demostró que algunas líneas oscuras del espectro se corren ligeramente hacia el rojo o hacia el azul (al alejarse o acercarse a la tierra). Hubble descubrió que la mayoría de galaxias se alejan de nosotros porque tienen un corrimiento hacia el rojo (Weinberg, 2000).

Teniendo en cuenta que la mayoría de galaxias se alejan entre sí, debe mencionarse el principio cosmológico, el cual afirma que a mayor distancia, mayor velocidad y a menor distancia menor
velocidad; esto puede apreciarlo cualquier observador en cualquier punto del universo. Las galaxias se alejan a una velocidad proporcional a la distancia (Weinberg, 2000), siempre y cuando la velocidad no se acerque a la de la luz debido a que nada puede ir más rápido que ésta según la teoría de la relatividad de Albert Einstein (Weinberg, 2000, pág. 31). Esto significa que entre más alejada esté una galaxia de nosotros, se alejará notablemente más rápido, en comparación a una más cercana.

Por otra parte, Según Weinberg (2000), Pasados 700.000 años después de la gran explosión, los primeros átomos pudieron crearse gracias a la disminución en la temperatura. Además el universo era lo suficientemente transparente como para permitir que la radiación viajara (pág. 100).

Durante los primeros 700.000 años los fotones se encontraban atrapados e imposibilitados para viajar a distancias considerables en medio de la espesa sopa cósmica que era el universo primitivo. Según afirma Weinberg (2000), estos se encontraban con electrones encargados de dispersarlos y absorberlos en el camino (pág. 54).

La humanidad logró ver cómo era el universo 700.000 años después de la gran explosión, pues fue el momento en el que la radiación logró viajar. Esto nos lleva a la imagen más antigua del universo, *El fondo de radiación cósmica de microondas*, más conocida como el eco del big bang.
Obtener esta fotografía y entender la enorme importancia de la misma para reforzar la teoría del Big Bang fue factible gracias a la radioastronomía.

En 1964 Penzias y Wilson trataban de medir la intensidad de ondas de radio emitidas por nuestra galaxia, cuando de repente un “ruído parásito” con una longitud de onda cercana a los 7,35 cm se asomó en su búsqueda. No variaba con el pasar de las horas ni con la dirección en que se dirigiera la antena. Todo parecía indicar que no provenía de la Vía láctea sino de un volumen mucho mayor del universo (Weinberg, 2000, págs. 48, 49). Las ondas de radio con longitudes de 7,35 cm, 21 cm, o 1 metro son llamadas radiación de microondas porque son menores a las usadas a comienzos de la segunda guerra mundial (Weinberg, 2000, pág. 49).

Las antenas de radio perciben ruidos que luego se relacionan con temperaturas, siempre y cuando estas superen el cero absoluto. Una temperatura de 3,5 grados Centígrados era muy baja pero equivalente al sospechoso ruido que percibían.
Mientras estos dos radio astrónomos estaban confundidos tratando de darle un significado a este fenómeno, el teórico P.J.E. Peebles daba una charla en la que expresaba que debía haber un fondo de ruido de radio remanente del universo primitivo, relacionado con una temperatura de aproximadamente 10 grados Kelvin que habría sobrevivido a la expansión, cuya temperatura sería menor comparada con la de miles de millones de años atrás, durante los primeros minutos del universo. (Weinberg, 2000, pág. 51).

El hallazgo de Penzias y Wilson trajo consigo lo que sería el descubrimiento más importante del siglo XX, relacionado con el Universo, después de los corrimientos al rojo.

Retrocediendo un poco y uniendo las piezas encontradas sobre el Universo primitivo, puedo hacer un corto relato de lo que posiblemente ocurrió durante los primeros tres minutos (Weinberg, 2000).

Hace eones de años el Universo que conocemos surgió de una gran explosión simultánea en todas partes del espacio infinito (Weinberg, 2000, pág. 16). Como es difícil saber qué sucedió antes del primer centésimo de segundo debido a la elevadísima temperatura de aquél momento (Weinberg, 2000, pág. 116), empezaré explicando lo que pasó después de este.

A 100.000 millones de grados Kelvin, las partículas abundantes y que tenían un lugar privilegiado en el universo eran los electrones, positrones, neutrinos fantasmales, antineutrinos y fotones (Weinberg, 2000, pág. 92). En el principio las partículas y antipartículas compartían un lugar importante en la composición del universo primitivo, sin embargo se cree que en algún momento las partículas superaron en cierta cantidad a las antipartículas y por esta razón, sin ahondar mucho, lo que conocemos está formado de materia y no de antimateria (Weinberg, 2000, pág. 77).
La velocidad a la que se expandía el universo en este momento era de 0,02 segundos y la densidad era 4.000 mil millones de veces mayor a la del agua (Weinberg, 2000, pág. 93).

Las partículas que forman los núcleos de los átomos que conocemos actualmente eran muy pocas, específicamente había un protón y un neutrón por cada mil millones de las partículas mencionadas anteriormente (Weinberg, 2000, pág. 17). En este momento se daban reacciones que considero importante mencionar: La colisión de un antineutrino con un protón da como resultado un positrón y un neutrón, lo mismo pasa a la inversa. La colisión entre un neutrino con un neutrón da como resultado un electrón más un protón y pasa lo mismo a la inversa.

Según (Weinberg, 2000), pasados 0,11 segundos la temperatura descendió a los treinta mil millones de grados Kelvin y seguían reinando las mismas partículas; a un ritmo de expansión de 0,2 segundos en el que la densidad disminuyó a 30 millones de veces la del agua.

Seguían presentándose reacciones entre partículas, posiblemente más frecuentes, debido al decrecimiento en la temperatura. Los neutrones más pesados se convertían en protones más ligeros. En cuanto a las partículas nucleares, el porcentaje de estas era 38% neutrones y 62% protones (pág. 95).

Cuando pasaron 1,09 segundos la densidad fue de 380.000 veces mayor que la del agua y el tiempo de expansión característico era de 2 segundos. La temperatura pasó a 10.000 millones de grados Kelvin, lo que produjo que se separaran los neutrinos y anti neutrinos y empezaran a comportarse como partículas libres desde entonces. Después de esto no ocuparon un lugar o función especial más allá de proveer algo de fuerza gravitacional al universo a partir de su energía. Durante este lapso de tiempo electrones y positrones empezaron a aniquilarse a una velocidad
mayor de la que podían ser creados. El balance de las partículas nucleares pasó a ser 24% neutrones y 76% protones (Weinberg, 2000, pág. 96).

A los 13,82 segundos la temperatura bajó a 3.000 millones de grados Kelvin. Los electrones y positrones perdieron su puesto prestigioso en el universo primitivo debido a su rápida aniquilación, la que a su vez detuvo temporalmente el descenso en la temperatura. En este momento el universo era lo suficientemente frío como para permitir que se formaran los primeros núcleos estables. El Helio 4 se mantenía, al tritio y al Helio3 les costaba mantenerse y el deuterio tenía una cohesión muy débil, motivo por el cual se destruía casi tan rápido como se formaba. Los neutrones seguían convirtiéndose en protones pero más lentamente. Entonces, el balance de partículas nucleares fue 17% neutrones y 83% protones (Weinberg, 2000, págs. 96, 97).

Pasados tres minutos, la temperatura descendió a los 1.000 millones de grados Kelvin y fue posible la unión más duradera entre protones y neutrones. La cantidad de electrones y positrones se redujo aún más y los componentes principales del universo pasaron a ser fotones, neutrinos, antineutrinos, una pequeña cantidad de material nuclear (73% hidrógenos y 27% helio) y algunos pocos electrones que sobrevivieron al veloz aniquilamiento (Weinberg, 2000, pág. 18). Fue en este instante, afirma Weinberg (2000), que núcleos tales como el Tritio, Helio3 y Helio 4 lograron mantenerse, sin embargo el Deuterio aún no lo conseguía. En este momento el balance de partículas nucleares era 13% neutrones y 87% protones (págs. 97, 98).

Quisiera seguir hablando sobre lo que pasó después, sin embargo la composición solo se basó en los primeros tres minutos del universo. Si alguien desea saber lo que sucedió puede leer el capítulo 5 de Weinberg (2000), de la página 98 en adelante.
4. Del Big Bang a la música

4.1 Reflexiones de campo y primer intento

El proceso compositivo dio sus primeros pasos cuando empecé a informarme acerca del tema extra musical, teniendo presente la pregunta ¿cómo definir elementos técnicos del discurso musical en interacción con el Big Bang? Al principio mi imaginación navegó en un sinfín de posibilidades que buscaban dar respuesta a esta pregunta.

Pronto, encontré la necesidad de comprender a grandes rasgos, la teoría de Big Bang y los elementos que me servirían de esta para realizar la composición. Asistí a conciertos y presentaciones ofrecidas por el Planetario de Bogotá, inscribiéndome además en una clase de astronomía general en la que me recomendaron varios libros. Uno de ellos, y del que partió casi todo el proceso compositivo fue, Los Tres Primeros Minutos del Universo por Stephen Weinberg (2000). El título simplemente me impactó y decidí que quería trabajar sobre esto.

Durante el proceso leí que de la aniquilación entre un electrón y un positrón, se produce un par de fotones (Ruffini, Vereshchagin, & Xue, 2009). Weinberg (2000) también lo dice, refiriéndose a los fotones como radiación pura (pág. 76). Teniendo en cuenta esto, pensé en la posibilidad de usar notas que al juntarse formaran acordes y luego requerieran una resolución. Por otro lado, las distintas densidades que se presentaban al transcurrir los segundos después de la Gran Explosión (Weinberg, 2000), podrían representarse con un considerable número de notas en un registro reducido del piano, que durante el transcurso de la obra se iría ampliando.

La armonía podría asociarse con las partículas más abundantes en el universo primitivo, como los Electrones, Positrones, Neutrinos fantasmales y Fotones (Weinberg, 2000, pág. 17). Para esto,
consideré necesario simbolizar aquellas partículas como notas específicas que luego formarían intervalos o acordes. El principal problema en aquel momento era establecer dichas notas.

Algunos meses después, en la materia de astronomía general me pidieron hacer una exposición en la que desarrollara el tema del Big Bang. Entonces decidí que era mi momento de experimentar. El resultado fue una composición pensada para piano y sintetizador, en la que utilicé los elementos que había estado pensando hasta ese día. A continuación compartiré el proceso de aquél entonces.

Determinados acordes no se acomodan a una digitación apropiada, como se puede observar en la figura 7. No se consideró necesaria una corrección debido a que no es el resultado final. La partitura completa se encuentra en los anexos págs. 101-105.

Esta obra, proyectada para formato de piano y sintetizador en aquel entonces, se explicará por segmentos, de acuerdo a la temporalidad del universo primitivo, describiendo lo que estaba ocurriendo en ese momento y la decisión compositiva vinculada. Finalmente, se indicará la página de los anexos en la cual se corrobora esta información.

4.1.1 El primer centésimo de segundo. Es difícil determinar qué sucedió antes del primer centésimo de segundo, como describe (Weinberg, 2000) en el capítulo 7. Por esta razón se toma en cuenta el primer centésimo de segundo y lo que pasó durante los tres primeros minutos después de este, en el universo primitivo.

A 100.000 millones de grados Kelvin, los electrones, positrones y neutrinos, se encontraban entre las partículas más abundantes. Aunque según Weinberg (2000) los fotones también hacían parte de este grupo, en aquél entonces decidí no incluirlos en los primeros compases (pág. 17).
Del compás 1 al 12, los positrones se relacionan con el acorde de do menor en clave de fa y los electrones con el acorde de do mayor en clave de sol, pensando en su naturaleza de anti partícula y partícula. Los neutrones se simbolizan con el do y el sol en clave se sol, dispuestos simultáneamente junto a los otros acordes. En este caso el acorde no tiene tercera debido a la neutralidad de dicha partícula, pues Weinberg (2000) afirma que durante ese momento y más adelante, no ejerce mayores tareas aparte de otorgar fuerza gravitacional al universo primitivo (pág. 95).

Figura 7. Electrones, positrones y neutrinos

Pensando en la posibilidad de una densidad energética elevándose cada vez más, concerniente a las interacciones fuertes entre partículas descritas por Weinberg (2000) en el capítulo 7, hice una excepción en cuanto al uso de los elementos anteriores al primer centésimo de segundo, e incorporé un crecimiento gradual en la dinámica, pasando de un piano en el compás 1 a un fortissimo en el
Con el fin de generar más tensión, el sol natural presente en el acorde que simboliza a los neutrinos, pasa a un sol sostenido en el compás 7. Anexos pág. 100.

Figura 8. Densidad energética elevándose cada vez más durante el primer centésimo de segundo se genera la gran explosión, "simultáneamente en todas partes, llenando todo el espacio desde el comienzo, en la que toda partícula de materia se alejó rápidamente de toda otra partícula" (Weinberg, 2000, pág. 16).

En el compás 13 se presenta un silencio simbolizando este hecho, que no pudo transmitir su sonido por la inexistencia de un medio en el cual transportarse. Del compás 14 al 26 se escribieron notas sueltas simbolizando el momento en que toda partícula se alejó de toda otra partícula. Los acordes escritos en el sintetizador, desde el compás 14 hasta el 35, ya no hacen referencia a las partículas más abundantes en el universo primitivo, sino a la densidad y temperatura.
extremadamente altas en ese momento, cercana a los 10^{11} °C (100.000.000.000) (Weinberg, 2000, pág. 16). Anexos págs. 100-102.

Figura 9. La gran explosión, toda partícula se aleja de toda otra partícula, densidad y temperatura extremadamente altas

4.1.2 Un décimo de segundo. Después de la gran explosión, la temperatura continuó descendiendo hasta llegar a los 30.000 millones de grados kelvin. Pasados 14 segundos la temperatura era de 3.000 millones de grados kelvin, suficiente para dar lugar a una aniquilación más rápida entre electrones y positrones (Weinberg, 2000, pág. 18). Debido a que anteriormente los acordes de do mayor y do menor habían simbolizado a electrones y positrones, pensé en unir ambas partes para representar a los fotones. Esto se puede observar del compás 27 al 38, cuando estos dos acordes tratan de formar ideas musicales sobre un colchón armónico de densidad y temperatura extremadamente altas, mencionadas en la figura 9.
Destacando el descenso en la temperatura a los 14 segundos, y el aumento en las colisiones, pasé de un doble forte en el compás 27 a un triple forte en el compás 38.

El decrescendo hasta el compás 44 solo hace referencia al descenso constante en la temperatura.

Figura 10. Aniquilación entre electrones y positrones

Figura 11. Aumento de colisiones y temperatura en descenso constante
4.1.3 Al final de los tres primeros minutos. Weinberg (2000, pág. 18) afirma que la temperatura en este momento descendió a los mil millones de grados kelvin, permitiendo que los protones y neutrones se unieran para formar núcleos complejos. Entre ellos se encontraba el Hidrógeno compuesto por un protón y un neutrón y el Helio compuesto por dos protones y dos neutrones. Esto se simboliza con dos motivos musicales. El primero representa un protón y el segundo un electrón. La unión de tales motivos permite que se forme un contrapunto entre ellos, dando lugar al hidrógeno y al helio. Obedeciendo a la cantidad de protones y electrones que conforman estos núcleos, se superponen uno o dos motivos musicales.

No se escribió nada en la parte del sintetizador desde el compás 45 hasta el 64, para darle importancia a un fenómeno tan importante como este.

Figura 12. Hidrógeno
Figura 13. Helio

El sintetizador se vuelve a incorporar en el compás 65. En este instante se presentan ideas musicales anteriores, que sugieren la presencia de fotones, neutrinos, antineutrinos (con las mismas notas que conforman a los neutrinos, invertidas, pasando de una quinta justa entre do y sol, a una cuarta justa entre sol y do), y algunos electrones.

Figura 14. Neutrinos y antineutrinos
4.2 Segundo intento y toma definitiva de decisiones.

En este apartado se abordan elementos trascendentales del proceso que dieron lugar a la realización de la obra final y a cada uno de sus movimientos, para de esta forma desarrollar un análisis simplificado de estos en relación a lo ocurrido durante los tres primeros tres minutos del universo, según Weinberg (2000), teniendo en cuenta que en el siguiente capítulo se llevará a cabo de forma más detallada.

Después de realizar el primer intento compositivo, continué leyendo sobre el Big Bang por unos meses más, hasta que decidí iniciar lo que sería la composición final. Fue entonces que me enfoqué en realizar un resumen de los acontecimientos más importantes durante los últimos tres minutos del universo según Weinberg (2000). A continuación decidí que el eje fundamental se basaría en cinco momentos trascendentales descritos con más detalle en el capítulo 5 de Weinberg (2000): El primer centésimo de segundo, 0,11 segundos después de la gran explosión, 1,09 segundos después de la gran explosión, 13,82 segundos después de la gran explosión y 3 minutos después de la misma.

Al sintetizar aún más la información determiné que partículas fundamentales como, electrones, positrones, neutrinos, antineutrinos, fotones y otras dos que tomaron importancia llegando a los tres minutos, como lo son los protones y neutrones (Weinberg, 2000, pág. 18), serían un cimiento más durante la construcción del proceso compositivo.

Tomada esta decisión debía encontrar las notas que caracterizarían a tan importantes partículas. Tuve algunas ideas, entre ellas usar los modos griegos o la Teoría de conjuntos y el Serialismo integral. Al final sentí que las dos últimas me servirían más para expresar lo que tenía en mente.
Por esta razón utilicé A Brief Introduction to Pitch-Class Set Analysis (Walters, 2001) y Serialismo integral (P. Morgan, 1999, pág. 353-363).

Debido a que la teoría de conjuntos hace uso de intervalos y a estos se les asigna un valor numérico (Walters, 2001), busqué cifras propias de cada partícula sin encontrar muchas opciones. Las cargas eléctricas mostraron una posibilidad que al poco tiempo se desintegró debido a similitudes entre partículas.

Con el transcurrir de los días recordé haber leído que algunas partículas pertenecían a la materia y otras a la antimateria, de hecho Weinberg (2000) afirma que

“Una regla fundamental de la física moderna es la de que, para cada tipo de partícula de la naturaleza, hay una antipartícula correspondiente, exactamente de la misma masa y spin, pero de carga eléctrica opuesta” (pág. 77).

Considerando esto realicé una gráfica partiendo con el fotón en cero, dado que según Weinberg (1995), este es a su vez partícula y antipartícula (pág. 13), y acomodando los Electrones, Positrones, neutrinos, anti neutrinos, protones y neutrones a la derecha o izquierda del fotón, obedeciendo a su naturaleza de materia o antimateria. Todos estos aspectos referidos a elementos musicales específicos se ilustran con detalle en el siguiente capítulo.

Posteriormente determiné las notas características de cada partícula partiendo de las principales reacciones entre ellas, poco después del primer centésimo de segundo, a unos 100.000 millones de grados Kelvin. Según (Weinberg, 2000)
“Las reacciones más importantes son: Un antineutrino más un protón dan un positrón más un neutrón (y a la inversa), un neutrino más un neutrón dan un electrón más un protón (y a la inversa)” (pág. 94).

Además de estas, decidí incluir la colisión entre dos fotones para producir un electrón y un positrón (y a la inversa) (Weinberg, 2000, pág. 76).

Tabla 1. Principales reacciones entre partículas después del primer centésimo de segundo

<table>
<thead>
<tr>
<th>Reacciones</th>
<th>Resultados</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antineutrino</td>
<td>Positrón + Neutrón</td>
</tr>
<tr>
<td>Positrón</td>
<td>Antineutrino + Protón</td>
</tr>
<tr>
<td>Neutrino</td>
<td>Electrón + Protón</td>
</tr>
<tr>
<td>Electrón</td>
<td>Neutrino + Neutrón</td>
</tr>
<tr>
<td>Fotón</td>
<td>Electrón + Positrón</td>
</tr>
</tbody>
</table>

Para definir la forma general que tendría la composición final se fijaron cuatro movimientos haciendo referencia a los acontecimientos más importantes durante los primeros tres minutos del universo (Weinberg, 2000). Es así que el primer movimiento se basa en los sucesos ocurridos durante el primer centésimo de segundo y lo que se desarrolló después, a una temperatura de 100.000 millones de grados Kelvin, con una velocidad de expansión de 0,02 segundos y una densidad 4.000 millones de veces mayor a la del agua, donde las partículas más abundantes eran los electrones, positrones, neutrinos fantasmales, antineutrinos y fotones (Weinberg, 2000, pággs. 92, 93). No se dejaron a un lado las partículas nucleares (protones y neutrones), sin embargo es importante aclarar que eran muy pocas en ese momento, específicamente 1000 millones de fotones, por partícula nuclear (Weinberg, 2000, pág. 17).
Durante los primeros compases del primer movimiento se presentan las partículas mencionadas anteriormente, resultado de la gráfica en la que a cada partícula se le asignó un número negativo, neutro o positivo, según fuera su naturaleza de anti partícula o partícula. Los acordes son disonantes y cuentan con dinámicas cada vez más fuertes, haciendo referencia a la interacción y temperaturas súper elevadas que posiblemente hubo antes del primer centésimo de segundo (Weinberg, 2000, pág. 91).

En el segundo movimiento ya habían transcurrido 0,11 segundos después de la gran explosión. La temperatura descendió a los treinta mil millones de grados Kelvin, permitiendo que reacciones como las que se exponen en la tabla 1 se presentaran recurrentemente. Weinberg (2000) escribe las reacciones en el primer fotograma (pág. 94), sin embargo no cesan en el segundo fotograma. Este suceso dio origen a la idea de formar intervalos con las notas que ya representaban a cada partícula (ver siguiente capítulo).

La temperatura descendió cada vez más, pasando por los 30.000 millones de grados Kelvin, después por los 10.000 millones, hasta llegar a los 3.000 millones de grados, ocasionando colisiones cada vez más frecuentes entre partículas (Tabla 1) (Weinberg, 2000, pág. 18). Esto causó que progresivamente aumentara las colisiones y por lo tanto el ritmo durante el segundo movimiento.

Cuando llegué al tercer movimiento mi enfoque se dirigió al universo primitivo, 1,09 segundos después de la gran explosión. A una temperatura de diez mil millones de grados Kelvin los Neutrinos y Antineutrinos se separaron comportándose desde entonces como partículas libres. Electrones y Positrones empezaron a aniquilarse rápidamente a una velocidad mayor de la que podían ser creados (Weinberg, 2000, pág. 95). Esto me inspiró a realizar un movimiento basado
en terceras disminuidas y sextas aumentadas, siendo los intervalos que representaban tales reacciones. Por otra parte las colisiones entre fotones, encargadas de producir electrones y positrones, no eran tan rápidas. Por esto decidí escribir muy pocos unísonos u octavas seguidas, siendo los intervalos que las representaban (ver siguiente capítulo).

El cuarto movimiento se concentra en los hechos más importantes ocurridos entre los 13,84 segundos y los 3 minutos después de la gran explosión. A una temperatura de tres mil millones de grados Kelvin los electrones y positrones perdieron su lugar privilegiado, debido a la rapidez en la que se aniquilaban. Pasados 14 segundos aproximadamente, el universo estuvo lo suficientemente frío como para permitir la formación de los primeros núcleos estables como lo son el Helio 4, Tritio, Helio 3 y Deuterio. El Helio 4 se mantenía mientras que el Tritio y el Helio 3 estaban menos ligados. El Deuterio tenía una cohesión muy débil. Cuando la temperatura llegó a los mil millones de grados Kelvin los núcleos como el Tritio, Helio 3 y Helio 4 lograron mantenerse unidos (Weinberg, 2000, págs. 96, 97). Esto me llevó a pensar en la cantidad de protones (z) y neutrones (n) que constituían a cada uno según (IAEA, 2009 - 2018), y la facultad de relacionarlos musicalmente con terceras menores y mayores partiendo de la partícula central (fotón).

Esto dio como resultado diversos acordes que me servirían para representar lo que considero el momento más hermoso durante los primeros tres minutos del universo (La creación de los primeros núcleos). Fenómeno que 700.000 años después de la gran explosión haría paralelismo con la formación de los primeros átomos estables (Weinberg, 2000, págs. 99, 100).

5. Los tres primeros minutos del universo

En el presente capítulo se expone un análisis detallado de la toma de decisiones derivadas del capítulo anterior, en la construcción de la composición final llamada Los Tres Primeros Minutos del Universo. Todo esto se relaciona directamente con el diario de campo y las reflexiones de campo asumidas durante el transcurso de la investigación.

Inicialmente se incorpora una breve síntesis de lo que aborda la composición en correspondencia a los sucesos más importantes durante los primeros minutos del Universo primitivo según (Weinberg, 2000) y a continuación se definen los elementos técnicos del discurso musical tales como alturas, ritmo, dinámicas y forma, en interacción con el referente extra musical anteriormente mencionado. En el caso de Alturas se especifica la toma de decisiones y se exponen algunos ejemplos, sin embargo la descripción detallada de las notas e intervalos utilizados por movimiento se encuentra en la sección de forma.
Partículas Elementales es nombre del primer movimiento y está basado en lo ocurrido durante el primer centésimo de segundo y algunos segundos después, a una temperatura de 100.000 millones de grados Kelvin. Colisiones, el segundo movimiento y se apoya en los 0.11 segundos después de la gran explosión, a una temperatura de 30.000 millones de grados Kelvin. Aniquilación es el tercer movimiento, construido a partir del minuto 1,09 después de la gran explosión, a una temperatura de 10.000 millones de grados Kelvin. Vida es el cuarto movimiento y se centra en los hechos más importantes ocurridos durante los 13,84 segundos y los 3 minutos después de la gran explosión, a temperaturas que van de los 3.000 millones a los 1.000 millones de grados Kelvin (Weinberg, 2000).

5.1 Alturas

Al determinar que las partículas fundamentales durante los primeros tres minutos del universo serían los electrones, positrones, neutrinos, antineutrinos, fotones, y las no menos importantes partículas nucleares, protones y neutrones (Weinberg, 2000, pág. 18), busqué lo que serían sus notas características, escribiendo las partículas en una recta de números negativos, positivos y uno neutro, haciendo referencia a su naturaleza de antipartícula, partícula o en el caso del fotón, ambas. (Weinberg, 2000, pág. 77) (Weinberg, 1995, pág. 13). No se incluyeron el antiprotón y el antineutrón debido a que Weinberg (2000) no las menciona cuando habla sobre las partículas de mayor importancia durante el universo primitivo.

Figura 16. Partículas y antipartículas
Utilizando flechas de colores identifiqué las reacciones o choques más importantes después del primer centésimo de segundo, a una temperatura de 100.000 millones de grados Kelvin (Weinberg, 2000, pág. 94). Cuando las puntas de las flechas se encuentran, simbolizo el choque entre ellas. De estas surgen dos flechas del mismo color que se dirigen al par de partículas que se generan después del choque. La segunda, cuarta y sexta reacción, están representadas con flechas de color más claro, en comparación a sus precedentes. La diferencia entre ellas radica en que suceden a la inversa (Weinberg, 2000).

Figura 17. Reacciones
Al escoger las notas que representarían a cada partícula se realizó el siguiente proceso inspirado en la teoría de conjuntos (Walters, 2001), cuando se asignan números a equivalencias enarmónicas:

- El primer paso consistió en asignar el número 0 a los fotones (Y) dado que Weinberg (1995), afirma que estas son partículas y antipartículas al mismo tiempo (pág. 13). En este caso a 0(Y) se le asignó C, porque se toma como el punto medio entre la materia (notas ascendentes a partir de C) y la antimateria (notas descendentes a partir de C).

\[\text{Figura 18. Fotón (Y) = 0} \]

- Según Weinberg (2000), del choque entre dos fotones resulta un electrón y un positrón (pág. 76). En este momento se tiene en cuenta a (Walters, 2001), cuando habla de Ordered Pitch Intervals, proporcionando números positivos o negativos a los intervalos ascendentes o descendentes. Al electrón (e-) se le asigna el intervalo de +1(Db) desde 0 por pertenecer a la materia. A su antipartícula, positrón (e+), se le asigna el intervalo de -1(B) por ser antimateria.
• Del encuentro entre un antineutrino y un protón se obtiene un positrón y un neutrón (Weinberg, 2000, pág. 94). Hasta ese momento se sabía que el positrón (e+) era -1(B). Entonces se tomó la decisión de partir desde este, surgiendo así el protón (P) con un intervalo de +4(Eb), siguiendo la secuencia de +2 del positrón (e+) al electrón (e-) y +2 del electrón (e-) al protón (P). Como las reacciones también suceden inversamente se establece al antineutrino (V) como -1(Bb) desde el positrón (e+). De esta forma finalmente el protón (P) se transforma en un +3 desde el fotón (Y) y el antineutrino (V) en un -2.

Figura 19. Electrón (e-) = +1, Positrón (e+) = -1

Figura 20. Protón (P) = +3, Antineutrino (V) = -2
Existe otra reacción posible y esta es en la que colisionan un neutrino y un neutrón para producir un electrón y un protón (Weinberg, 2000, pág. 94), sin embargo hasta el momento sabemos que el electrón (e-) es +1 y el protón (P) es +3 partiendo de 0 (Y). Teniendo en cuenta las reacciones inversas, del electrón (e-) surge el intervalo +1 para formar el neutrino (V) (D) que desde el fotón (Y) se convierte en +2, y del protón (P) aparece un +1 para formar el neutrón (n) (E), que desde el fotón (Y) forma un +4. Esta última reacción corrobora la correcta ubicación del protón (P) en el pentagrama, teniendo en cuenta que este puede surgir del neutrón (n) y viceversa.

Figura 21. Neutrino (V) = +2, Neutrón (n) = +4. (Versión final de partículas y notas)

Este proceso fue posible debido a que todas las reacciones pueden suceder inversamente. Es así que la energía de una partículas no desaparece después de una aniquilación, sino que forma otras dos a partir de esta (Weinberg, 2000, pág. 75). En tal caso tendríamos resuelta la reacción entre electrón (e-) y positrón (e+), que podría dar lugar a dos fotones (Y), observando la figura 15 (Weinberg, 2000, pág. 76). En consecuencia de lo realizado, las partículas adquieren un lugar en el pentagrama y un número característico, como se observa en la Tabla 2
Tabla 2. *Partículas y números característicos*

<table>
<thead>
<tr>
<th>Partícula</th>
<th>Número característico</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fotón</td>
<td>0</td>
</tr>
<tr>
<td>Electrón</td>
<td>1</td>
</tr>
<tr>
<td>Positróno</td>
<td>-1</td>
</tr>
<tr>
<td>Protón</td>
<td>3</td>
</tr>
<tr>
<td>Antineutrino</td>
<td>-2</td>
</tr>
<tr>
<td>Neutrón</td>
<td>4</td>
</tr>
<tr>
<td>Neutrino</td>
<td>2</td>
</tr>
</tbody>
</table>

Vale la pena resaltar que la información descrita en la figura 16 y la Tabla 2 coincide armoniosamente. Esta similitud es coincidencia teniendo en cuenta que las notas emergieron de la relación entre las reacciones más importantes durante los primeros tres minutos (Weinberg, 2000), y de Ordered Pitch Intervals, proporcionando números positivos o negativos a los intervalos ascendentes o descendentes (Walters, 2001).

5.1.1 Tratamiento de las alturas en Partículas elementales. En relación con la búsqueda de alturas anteriormente descrita se elaboró el primer movimiento, en el cual se exponen las partículas elementales (Weinberg, 2000, pág. 18), teniendo en cuenta sus notas características según la figura 21. Anexos pág. 106,107
Figura 22. Partículas elementales y notas en el primer movimiento

5.1.2 Tratamiento de las alturas en Colisiones. En la elaboración del segundo movimiento, utilicé las notas que caracterizaban a las partículas según la Figura 21, teniendo en cuenta las reacciones de las que habla Weinberg (2000), formando así intervalos que posteriormente también utilizaría en el tercer movimiento.

Figura 23. Colisiones entre partículas 1
En el cuadro se puede observar como el choque entre Antineutrino (Bb) y Protón (Eb) forman una Quinta o una Cuarta justa con respecto a la nota desde la cual emerge el intervalo. Lo mismo ocurre con los demás choques entre partículas. Debido a que algunos presentaron similitud en cuanto a los intervalos resultantes, asigné uno de ellos a cada caso. Anexos págs. 108,109

![Figure 24. Colisiones entre partículas](image)

Figura 24. Colisiones entre partículas

5.1.3 **Tratamiento de las alturas en Aniquilación.** Llegando al tercer movimiento decidí utilizar una gran cantidad de intervalos específicos, como la tercera disminuida y sexta aumentada, asignados al choque entre electrones y positrones en la Figura 23. En este movimiento también se presentan algunas octavas y unísonos haciendo referencia a los choques poco frecuentes entre

![Figure 25. Algunos de los intervalos que representan colisiones en el segundo movimiento](image)

Figura 25. Algunos de los intervalos que representan colisiones en el segundo movimiento
fotones, encargados de crear electrones y positrones. Esto se realizó pensando en el universo primitivo, 1,09 segundos después de la gran explosión, a una temperatura de 10.000 millones de grados Kelvin, en los que según Weinberg (2000), Electrones y Positrones empezaron a aniquilarse a una velocidad mayor de la que podían ser creados (pág. 95). Anexos págs. 110-112

Figura 26. Algunos de los intervalos de 3a Dim, 6a Aum y Oct que representan los choques en el tercer movimiento

5.1.4 Tratamiento de las alturas en Vida. Cuando me dispuse a elaborar el cuarto movimiento, pensé que lo más importante sería el momento en el cual empiezan a formarse los primeros núcleos y las partículas que los componían. Teniendo en cuenta que de los 13,84 segundos a los 3 minutos después de la gran explosión, la temperatura descendió lo suficiente como permitir la formación de los primeros núcleos, entre los que se encontraba el Helio 4 conformado por dos protones y dos neutrones, el Tritio conformado por un protón y dos neutrones, el Helio 3 conformado por dos protones y un neutrón, el Deuterio conformado por un protón y un neutrón (Weinberg, 2000, págs. 96,97), realicé una tabla en la que formé lo que serían los acordes del último movimiento.
Esto se llevó a cabo partiendo del fotón (Y) o el 0 según la Figura 21, hasta llegar en este caso al protón o el neutrón. Como se puede observar en aquella figura, del fotón al protón se forma un intervalo de tercera menor y del fotón al neutrón una tercera mayor. De acuerdo a esta informacion, y a la cantidad de protones y neutrones que conformaron a los primeros núcleos, pasados 13,84 segundos después de la gran explosión (Weinberg, 2000, págs. 96,97), se construyeron acordes disminuidos, aumentados, menores y terceras mayores.

\[
\begin{align*}
4\text{He} &= 2\text{P} + 2\text{n} \rightarrow 2 \text{Terceras menores} + 2 \text{Terceras mayores} = X^0 + X^+ \\
3\text{H} &= \text{P} + 2\text{n} \rightarrow 1 \text{Tercera menor} + 2 \text{Terceras mayores} = \text{Tercera menor} + X^+ \\
3\text{He} &= 2\text{P} + \text{n} \rightarrow 2 \text{Terceras menores} + 1 \text{Tercera mayor} = X^0 + \text{Tercera mayor} \\
2\text{H} &= \text{P} + \text{n} \rightarrow 1 \text{Tercera menor} + 1 \text{Tercera mayor} = X \text{menor}
\end{align*}
\]

Figura 27. Núcleos y acordes característicos

Una vez realizada esta tabla, se armaron los acordes presentes en el cuarto movimiento. Para esto se utilizaron las notas características de la Figura 21, desde la más grave hasta la más aguda, como las terceras de los acordes a formar.

Por cada núcleo se crearon los siguientes acordes disminuidos, aumentados, menores y terceras mayores.
<table>
<thead>
<tr>
<th>Núcleos</th>
<th>Acordes y Terceras</th>
</tr>
</thead>
<tbody>
<tr>
<td>4He</td>
<td>Go + Gb$^+$, Abg+ G$^+$, Ag + Ab$^+$, Bbo+ A$^+$, Bg + Bb$^+$, Co + B$^+$, Dbo + C$^+$</td>
</tr>
<tr>
<td>3H</td>
<td>Gm (Tercera) + Gb$^+$, Abm (Tercera) + G$^+$, Am (Tercera) + Ab$^+$, Bbm (Tercera) + A$^+$, Bm (Tercera) + Bb$^+$, Cm (Tercera) + B$^+$, Dbm (Tercera) + C$^+$</td>
</tr>
<tr>
<td>3He</td>
<td>Go + Gb(Tercera), Abg+ G (Tercera), Ag + Ab (Tercera), Bbo + A (Tercera), Bg + Bb (Tercera), Co + B (Tercera), Dbo + C</td>
</tr>
<tr>
<td>2H</td>
<td>Gm, Abm, Am, Bbm, Bm, Cm, Dbm</td>
</tr>
</tbody>
</table>

En la construcción del cuarto movimiento y cada una de sus secciones se utilizaron solo algunos de estos acordes, percibiendo en previos intentos, un exceso de los mismos en relación a lo que se quería transmitir musicalmente. Anexos págs. 113-116
5.2 Ritmo

Según Willems (1956), el ritmo se divide en métrica y rítmica, la primera refiriéndose a la medición del ritmo y la segunda a la ciencia de las formas rítmicas. Teniendo esto en cuenta, la métrica general en la composición, Los Tres Primeros Minutos del Universo, es ternaria. Lo pensé de esta forma, relacionando las partículas elementales del universo con las figuras geométricas bidimensionales. Recordé una clase de análisis musical con el Profesor Roberto Rubio en la que afirmaba que el compás ternario de subdivisión binaria (3/4) daba una sensación cíclica más estable que el resto de métricas.

Después de mencionar esto, preguntó cuál era la primera figura bidimensional que se podía formar uniendo líneas rectas de tamaños iguales. Con una línea no se podía formar nada, con dos
tampoco, pero con tres se podía formar el triángulo equilátero. Aquel día él tomó la perfección de este hecho como un elemento que podríamos relacionar con la métrica de ¾. Sin duda fue algo difícil de olvidar para mí. Teniendo en cuenta que sin las partículas y situaciones específicas ocurridas en los primeros tres minutos del universo, no se habría formado lo que conocemos e ignoramos hoy en día sobre el cosmos, al igual que no podría formarse un triángulo equilátero sin tres líneas exactamente iguales, decidí que toda la obra estaría en ¾.

5.2.1 Tratamiento del ritmo en Partículas elementales. Del compás 1 al 17 las blancas con punto ligadas a otras blancas con punto se diferencian de algunas dispuestas en cada acorde, que no están ligadas. Estas exponen las notas que representan las partículas elementales en la Figura 21, durante los primeros tres minutos, tales como el Fotón, Electrón, Positrón, Protón, Anti neutrino, Neutrino y Neutrón (Weinberg, 2000, pág. 18).

Figura 29. Exposición de partículas elementales
Del compás 18 al 36 se presentan las notas elementales con una figura de duración particular. Esto se inspiró en el Serialismo integral, Morgan (1999, pág. 362) y se ejecutó desde la nota más grave hasta la más aguda con respecto a la Figura 21. Anexos págs. 106,107

Figura 30. Duración asignada a notas elementales, utilizada en los movimientos 1 y 3

Figura 31. Exposición de partículas elementales, con notas y duraciones asignadas, según figura 26

5.2.2 Tratamiento del ritmo en Collisiones. Durante el transcurso del movimiento se pueden evidenciar matices agógicos que buscan aludir los 0,11 segundos después de la gran explosión, en los que según Weinberg (2000), la temperatura descendió a treinta mil millones de grados kelvin,
permitiendo reacciones más recurrentes entre partículas a medida que la temperatura descendía (pág. 94). Revisando detenidamente el segundo movimiento se puede distinguir claramente este fenómeno, específicamente del compás 12 en adelante. La velocidad aumenta progresivamente con un accelerando, pasando de un adagio negra= 40 en el compás 1 a un andante negra= 90 en el compás 14.

Los choques pasan de tener una duración de blanca con punto a negra con punto en los compases 17 y 18, hasta llegar el accelerando del 19, arribando a un andante negra= 100 en el compás 21, expresando las colisiones por medio de negras y los resultados por medio de corcheas. El ritardando desde el compás 35 se utiliza para dar una sensación de final a la pieza.

Figura 32. Matices agógicos relacionados con reacciones recurrentes entre partículas, colisiones y resultados
Del compás 1 al 11 las colisiones entre partículas se expresan por medio de dos blancas con punto dispuestas simultáneamente (figuras 23 y 24). El resultado de cada choque o reacción se escribe en el compás posterior, con duraciones de negra con punto. Anexos págs. 108,109

![Figura 33. Exposición de colisiones y reacciones](image)

5.2.3 Tratamiento del ritmo en Aniquilación. Retomando las duraciones asignadas a las notas elementales en la figura 30, los compases 1,2 y 3 del tercer movimiento se basaron en las descritas como 0, 1, 2, 3 y 4. A partir de estas notas se formaron intervalos ascendentes de sextas aumentadas y terceras disminuidas, haciendo referencia a los 1,09 segundos después de la gran explosión, en los que la temperatura descendió a los 10.000 millones de grados Kelvin, ocasionando la aniquilación de electrones y positrones a una velocidad mayor de la que podían ser creados (Weinberg, 2000, pág. 95).
Figura 34. Motivo principal. Duraciones de notas según Figura 26 y exposición de choques entre electrones y positrones

En los compases que suceden a los tres primeros, se presenta el motivo expuesto con anterioridad, cambiando su composición rítmica con la finalidad de evidenciar choques cada vez más rápidos entre Electrones y Positrones, a una temperatura de 10.000 millones de grados Kelvin (Weinberg, 2000, pág. 95).

Figura 35. Motivo principal alterado
Llegando al compás 20 aparecen dos intervalos de octava escritos en blanca con punto, generando una duración más larga que simboliza la escasez de choques entre fotones representados en la Figura 23 con octavas y unísonos. Este fenómeno se evidencia mejor en el compás 27, cuando los fotones (Octavas y unísonos con duraciones de hasta 6 tiempos), hacen un esfuerzo por generar más colisiones.

Figura 36. Exposición de colisiones entre fotones 1

Figura 37. Exposición de colisiones entre fotones 2
En el compás 40 surgen de nuevo terceras disminuidas y sextas aumentadas con duraciones de corchea y negra, haciendo alusión al creciente aumento de colisiones entre positrones y electrones (Weinberg, 2000, pág. 95).

El motivo principal aparece de nuevo con algunas variaciones en el compás 39. Este se presenta cada vez con más frecuencia hasta finalizar el movimiento en el compás 63. Anexos pág. 110-112

Figura 38. Variaciones del motivo principal y énfasis en la frecuencia de colisiones entre electrones y positrones

5.2.4 Tratamiento del ritmo en Vida. En este movimiento se expone musicalmente lo que sucedió entre los 13,82 segundos y los 3 minutos después de la gran explosión, cuando la temperatura bajó a 3.000 millones de grados Kelvin, permitiendo la formación de los primeros núcleos estables como el Helio 4, Tritio, Helio 3 y Deuterio (Weinberg, 2000, págs. 96,97).

Del compás 1 al 18 se presenta el Helio 4, al cual, según Weinberg (2000), le es fácil mantenerse unido a esta temperatura. Por esta razón tiene un flujo musical sin interrupciones.
Figura 39. Inicio del Cuarto movimiento (Helio 4)

Del compás 19 al 38 se da a conocer el Tritio. A este núcleo le cuesta mantenerse pasados 13,82 segundos después de la gran explosión; sin embargo logra una cohesión más duradera a una temperatura de 1000 millones de grados Kelvin (Weinberg, 2000, pág. 97). Por esta razón, al igual que el Helio 4, mantiene una idea rítmica musical estable. Su lucha por sostenerse se refleja en el compás 37, cuando no continúa con la idea musical que venía trabajando.

Figura 40. Baja cohesión del Tritio, pasados 13, 84 segundos después de la gran explosión
Del compás 39 al 58 se presenta el Helio 3, al cual también le es difícil mantenerse pasados 13, 82 segundos después de la gran explosión; Llegando a los tres minutos se estabiliza (Weinberg, 2000, pág. 97). Su naturaleza voluble en aquel momento se evidencia musicalmente con el uso de negras y blancas en clave de fa, junto a una melodía en clave de sol que se esfuerza por mantenerse, perdiendo su forma en el compás 55.

![Figura 41. Baja cohesión del Helio 3 pasados 13, 82 segundos después de la gran explosión](image)

Finalmente llegamos al compás 60, en el que se expone el núcleo de Deuterio con una muy baja cohesión, entre los 13, 82 segundos y los 3 minutos después de la gran explosión. Cuando la temperatura llegó a los 900 millones de grados Kelvin logró mantenerse, sin embargo ya habían pasado 3 minutos y 46 segundos (Weinberg, 2000, pág. 98).
En este movimiento se evidencia una melodía clara que no llega a desarrollarse. Los acordes en clave de fa desaparecen llegando al compás 75, vuelven a aparecer en el 76, desaparecen en el 78, y tratan de retomar sin lograrlo en el último compás. Anexos págs. 113-116

Figura 42. Cohesión muy débil del Deuterio, pasados 13, 82 segundos después de la gran explosión

5.3 Dinámicas

5.3.1 Tratamiento de dinámicas en Partículas elementales. Del compás 1 al 14 las notas elementales se presentan una por una en un crescendo, que va de un triple piano a un doble forte, haciendo alusión a las interacciones y temperaturas súper elevadas antes del primer centésimo de segundo, rebasando los 100.000 millones de grados Kelvin (Weinberg, 2000, pág. 91).

Un día en marzo de 2018 estaba hablando con mi profesora de astronomía general sobre varios temas que llamaban mi atención. Ella me apoyó en la decisión de narrar este momento como un ascenso exorbitante en cuanto a densidad y energía, lo que provocó la gran explosión como una vía de descanso ante tal fenómeno. Por esto las dinámicas del compás 1 al 14 son cada vez más fuertes. Apoyando esta idea se incluyeron poco a poco las notas que simbolizan las partículas elementales en la Figura 21, produciendo una sonoridad cada vez más fuerte y disonante.
En el compás 15 se representa la gran explosión. Debido a que según lo dicho por mi profesora de astronomía general en el primer semestre del año 2017, no había un medio por el cual el sonido pudiera viajar, este compás está silencio. En el compás 16 todas las notas que simbolizan a las partículas elementales suenan simultáneamente con un triple forte. Después del primer centésimo de segundo toda partícula se alejó de toda otra partícula (Weinberg, 2000, pág. 16), por esta razón las notas que representan a dichas partículas Figura 21, suenan en diferentes alturas y sin un aparente orden. Viajan libremente en un mezzopiano debido a que la densidad y temperatura descendieron después del primer centésimo de segundo (Weinberg, 2000, pág. 18). Anexos págs. 106,107

5.3.2 Tratamiento de dinámicas en Colisiones. Pasados 0,11 segundos después de la gran explosión la temperatura descendió a los treinta mil millones de grados Kelvin y reinaban partículas como electrones, positrones, neutrinos fantasmales, antineutrinos y fotones (Weinberg, 2000, pág. 94). Debido a este descenso se produjo un ascenso de colisiones entre partículas, que se expresan musicalmente por medio de intervalos (Véase Figura 23 y 24). Cuando estos se ubican simultáneamente se representa el choque y cuando cada nota del intervalo se escribe en diferentes tiempos se simboliza el resultado (Ver Figura 33).

Para dar énfasis a los choques y resultados se asignaron las dinámicas forte y piano a cada caso. Este proceso se observa del compás 1 al 16. El crescendo del compás 23 al 28 simboliza el aumento de colisiones que se iba presentando a medida que la temperatura descendía (Weinberg, 2000, pág. 18). Desde el compás 29 se genera un diminuendo y en el compás 35 un ritardando. Estos se utilizan para finalizar el movimiento. Anexos págs. 108,109
5.3.3 Tratamiento de dinámicas en Aniquilación. Pasados 1,09 segundos la temperatura descendió a 10.000 millones de grados Kelvin, lo que provocó que electrones y positrones empezaran a aniquilarse a una velocidad mayor de la que podían ser creados (Weinberg, 2000, pág. 95). El choque desmesurado entre estas partículas empieza con un messoforte. Sin embargo las dinámicas en este movimiento están relacionadas con la expresión musical en general. Los elementos simbólicos se asocian mayormente con las alturas y el ritmo expuestos anteriormente. No obstante, las dinámicas más fuertes se encuentran del compás 1 al 26 y respaldan los intervalos de tercera disminuida y sexta aumentada, que representan los choques entre electrones y positrones Figura 23.

Del compás 27 al 38 el movimiento pasa de un piano a un doble piano, debido a que es allí donde se encuentran algunas octavas y uniónosos relacionados con el choque entre fotones que hacen un vano esfuerzo por crear electrones y positrones (Weinberg, 2000, pág. 95).

En el compás 39 se retoman los intervalos de tercera disminuida y sexta aumentada con un messoforte, apoyando el fenómeno anteriormente mencionado. Anexos págs. 110-112

5.3.4 Tratamiento de dinámicas en Vida. En este movimiento las dinámicas básicamente refuerzan el fluido musical escrito, que transmite la formación y cohesión de los primeros núcleos 13,82 segundos después de la gran explosión, a una temperatura de 3000 millones, 1000 millones y 900 millones de grados Kelvin (Weinberg, 2000, págs. 96-98). Anexos págs. 113-116
5.4 Forma

Para establecer la forma general de la composición se fijaron cuatro movimientos, haciendo referencia a los acontecimientos más importantes durante los primeros tres minutos (Weinberg, 2000).

5.4.1 Tratamiento de forma en Partículas elementales. Es un movimiento lento escrito en tonalidad de C, de estructura binaria, que introduce diferentes alteraciones durante su desarrollo y un evidente contraste entre sus dos secciones.

Del compás 1 al 14 se presenta la sección A, con una textura homofónica y un ciclo regular. La creciente disonancia y las dinámicas en un constante crescendo, representan la interacción fuerte que posiblemente hubo antes del primer centésimo de segundo (Weinberg, 2000, pág. 91). Cada 2 compases se presenta una nota nueva, escenificando en cada caso, las partículas fundamentales expuestas con anterioridad en la Figura 21.

Del compás 15 al 17 hay un episodio musical que simboliza la gran explosión con un compás en el silencio y su eco del 16 al 17.

Del compás 18 al 36 se presenta la sección B con una textura polifónica y un ciclo irregular. Esta simboliza el momento en que toda partícula se aleja de toda otra partícula (Weinberg, 2000, pág. 16).

Del compás 36 al 43 se presenta una coda reiterando la duración de cada nota, con referencia a la Figura 30. Anexos pág. 106,107
Tabla 4. Palabras clave para el análisis de la forma en Partículas elementales

<table>
<thead>
<tr>
<th>Palabras clave</th>
<th>Abreviatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección</td>
<td>Sec</td>
</tr>
<tr>
<td>Idea Musical</td>
<td>IM</td>
</tr>
<tr>
<td>Compases</td>
<td>Com</td>
</tr>
<tr>
<td>Plan Armónico</td>
<td>PA</td>
</tr>
</tbody>
</table>

Tabla 5. Forma, Análisis de Partículas elementales

<table>
<thead>
<tr>
<th>Sec</th>
<th>IM</th>
<th>A</th>
<th>IM1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Com</td>
<td>1-2</td>
<td>5-6</td>
<td>7-8</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>IIb</td>
<td>Imaj7(b2)</td>
</tr>
<tr>
<td>PA=C</td>
<td>I</td>
<td>IIb</td>
<td>Imaj7(b2)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sec</th>
<th>Episodio</th>
<th>B</th>
<th>Coda</th>
</tr>
</thead>
<tbody>
<tr>
<td>IM</td>
<td>IM2</td>
<td>IM3</td>
<td>IM4</td>
</tr>
<tr>
<td>Com</td>
<td>15</td>
<td>16-17</td>
<td>18-36</td>
</tr>
<tr>
<td></td>
<td>Silencio</td>
<td>Imaj7(b2,b3,b7,9)</td>
<td>Imaj7(b2,b3,b7,9)</td>
</tr>
<tr>
<td>PA=C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5.4.2 Tratamiento de forma en Colisiones. Es un movimiento en tonalidad de C, con una estructura homofónica, cuya agógica cambia a medida que este avanza. Su estructura binaria e
introduce diferentes alteraciones relacionadas con la construcción de intervalos. Además cuenta con algunos contrastes rítmicos durante su desarrollo.

Del compás 1 al 12 se presenta la sección A con un ciclo regular. Los intervalos presentes en cada acorde simbolizan las reacciones de la Tabla 1, cuando el universo tenía la edad de 0,11 segundos, a una temperatura de 30.000 millones de grados Kelvin (Weinberg, 2000, pág. 94). Cuando los intervalos son simultáneos simbolizan las colisiones entre partículas. Si están dispuestos melódicamente simbolizan las reacciones de dichas colisiones (Ver figuras 23 y 24).

Del compás 13 al 18 aparece un puente que conduce a la siguiente sección. En este momento se empiezan a presentar varios acelerandos con el fin de generar contrastes rítmicos, que obedecen al ascenso en las colisiones, producto de la constante disminución en la temperatura del universo primitivo (Weinberg, 2000, pág. 18).

Del compás 19 al 31 se exponen las secciones B, B1 y B2, con un ciclo irregular y algunos contrastes a nivel melódico, específicamente del compás 26 al 31. Las octavas en clave de fa, del compás 19 al 21, especifican la nota desde la cual se forma el intervalo que simboliza la colisión en los dos siguientes tiempos. Los resultados de estas se ubican en intervalos melódicos dispuestos en la clave de sol.

En el compás 22 se encuentra una extensión interna que da paso a B1, del compás 23 al 25 con algunas ideas musicales de B, escritas en diferentes registros.

Del compás 26 al 31 se presenta B2 con una idea rítmica en clave de fa similar a la que se viene trabajando en B y B1. Sin embargo expone una melodía nueva basada en la misma lógica de B, aunque diferente, escribiendo melódicamente los intervalos que representan las colisiones.
Del compás 32 al 39 se anuncia el final con una coda que presenta intervalos de colisiones y resultados. Anexos págs. 108,109

Tabla 6. Palabras clave para el análisis de la forma en Colisiones

<table>
<thead>
<tr>
<th>Palabras clave</th>
<th>Abreviatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección</td>
<td>Sec</td>
</tr>
<tr>
<td>IM</td>
<td>Idea musical</td>
</tr>
<tr>
<td>Com</td>
<td>Compases</td>
</tr>
<tr>
<td>PA</td>
<td>Plan armónico</td>
</tr>
<tr>
<td>Inter</td>
<td>Intervalos</td>
</tr>
</tbody>
</table>

Tabla 7. Forma, Análisis de Colisiones

<table>
<thead>
<tr>
<th>Sec</th>
<th>IM</th>
<th>A</th>
<th>Puente</th>
<th>IM1</th>
<th>IM1’</th>
</tr>
</thead>
<tbody>
<tr>
<td>Com</td>
<td></td>
<td>1-2</td>
<td>3-4</td>
<td>5-6</td>
<td>7-8</td>
</tr>
<tr>
<td>PA=C Inter</td>
<td>2aM</td>
<td>7am</td>
<td>3a Dim</td>
<td>Octava</td>
<td>5a just</td>
</tr>
<tr>
<td></td>
<td>5a Just</td>
<td>4a Just</td>
<td>7am</td>
<td>6a Aum</td>
<td>6a Aum</td>
</tr>
<tr>
<td></td>
<td>4a Just</td>
<td>5a Just</td>
<td>2aM</td>
<td>7am</td>
<td>4a just</td>
</tr>
<tr>
<td></td>
<td>5a Just</td>
<td>7am</td>
<td>3a Dim</td>
<td>Octava</td>
<td>2aM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sec</th>
<th>IM</th>
<th>B</th>
<th>Ext Int</th>
<th>B1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Com</td>
<td></td>
<td>IM2</td>
<td>IM3</td>
<td>IM2’</td>
</tr>
<tr>
<td>PA=C Inter</td>
<td>6a Aum</td>
<td>4a Just</td>
<td>Unisono</td>
<td>7am</td>
</tr>
<tr>
<td></td>
<td>5a Just</td>
<td>3a Dim</td>
<td>2aM</td>
<td>4a Just</td>
</tr>
<tr>
<td></td>
<td>7am</td>
<td>5a</td>
<td>2aM</td>
<td>Octava</td>
</tr>
<tr>
<td></td>
<td>Unisono</td>
<td>3a Dim</td>
<td>6a Dim</td>
<td>Unisono</td>
</tr>
</tbody>
</table>
5.4.3 Tratamiento de forma en Aniquilación. Es un movimiento rápido escrito en tonalidad de C, de estructura binaria y ciclo irregular, que introduce diferentes alteraciones durante su desarrollo y genera un contrastante cambio entre la sección A y la sección B.

En la figura 23 el choque entre electrones y positrones se representa con intervalos de tercera disminuida y sexta aumentada. Por otro lado el choque entre fotones se simboliza con unísonos y octavas. Debido a que las colisiones entre fotones, encargadas de producir electrones y positrones, eran menos frecuentes después de los 1,09 segundos en comparación a las de electrones y positrones (Weinberg, 2000, pág. 95), durante todo el movimiento se presentan muy pocos intervalos de unísono y octava, en comparación a la gran cantidad de intervalos de tercera disminuida y sexta aumentada.

Del compás 1 al 3 se presenta un motivo que durante el transcurso del movimiento varía en duraciones y notas.
La sección A se expone del compás 1 al 20 con una textura homofónica. Se representa el universo primitivo 1,09 segundos después de la gran explosión a una temperatura de 10.000 millones de grados Kelvin. Electrones y positrones aceleran su aniquilación a una velocidad mayor de la que pueden ser creados (Weinberg, 2000, pág. 95). Con relación a esto se escribieron mayormente intervalos de sexta aumentada y tercera disminuida, junto con algunas octavas que aparecen esporádicamente de acuerdo a la estructura de intervalos en la figura 23.

Del compás 21 al 26 se presenta un puente en el que las figuras disminuyen sus duraciones para llegar a la sección B, compás 27.

Del compás 27 al 38 se manifiesta la sección B, de textura polifónica, con intervalos de octava y unísono, haciendo referencia a las escasas colisiones entre fotones descritas anteriormente.

Del compás 39 al 44 se construye un puente de terceras disminuidas, sextas aumentadas y algunas octavas, contrastando con la sección B, que conduce a la sección A’ del compás 45 al 54 con algunas variaciones rítmicas de A e ideas musicales del segundo puente.

Del compás 55 al 58 finaliza el movimiento incluyendo una coda del compás 59 al 62. Anexos pág. 110-112

Tabla 8. Palabras clave para el análisis de la forma en Aniquilación

<table>
<thead>
<tr>
<th>Palabras clave</th>
<th>Abreviatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección</td>
<td>Sec</td>
</tr>
<tr>
<td>Idea musical</td>
<td>IM</td>
</tr>
<tr>
<td>Compases</td>
<td>Com</td>
</tr>
<tr>
<td>Plan armónico</td>
<td>PA</td>
</tr>
<tr>
<td>Intervalos</td>
<td>Inter</td>
</tr>
</tbody>
</table>
5.4.4 Tratamiento de forma en Vida. Es un movimiento lento en tonalidad de C, escrito en cuatro secciones, que introduce diferentes alteraciones en relación a los acordes que representan a cada núcleo en la Tabla 3. No se hace uso de todos sino de aquellos que consideré útiles, en cuanto a lo que deseaba transmitir musicalmente.
Las cuatro secciones del movimiento son contrastantes entre sí debido al significado subjetivo que le di a cada núcleo, de acuerdo a su creación y comportamiento de los 13,84 segundos a los 3 minutos después de la gran explosión.

Del compás 1 al 18 se presenta la sección A con una textura homofónica y un ciclo irregular, representando al núcleo de Helio 4, formado por dos protones y dos neutrones, que lograba mantenerse pasados 13,84 segundos después de la gran explosión (Weinberg, 2000, pág. 96). En los compases 13 y 14 se presenta un episodio que conduce al final de la sección. Los acordes pertenecientes a la tabla número 3 que lo componen son: Gº+Gb+, Bbº+A+ y Dbº+C+

Del compás 19 al 38 se expone la sección B con una textura homofónica y un ciclo irregular, simbolizando al Tritio, formado por un protón y dos neutrones, el cual estaba menos ligado en comparación al Helio 4 pasados 13,84 segundos y que logró permanecer unido cuando la temperatura descendió a los mil millones de grados Kelvin, antes de los primeros tres minutos (Weinberg, 2000, págs. 96,97). Este movimiento va en aumento rítmico en cuanto a la duración de sus notas, en relación al esfuerzo que ejerce para mantenerse unido. Del compás 36 al 37 esto se resalta aún más cuando se interrumpe la idea melódica y se finaliza en el compás 38 con un doble piano.

Los acordes que lo componen en relación a la tabla 3 son los siguientes: Gm (Tercera) y Gb+

Del compás 39 al 58 se expone la sección C con una textura homofónica y un ciclo regular, simbolizando al Helio 3, formado por dos protones y un neutrón, con una fuerza de unión similar al Tritio pasados 13, 84 segundos después de la gran explosión. Logró permanecer unido a los mil millones de grados Kelvin, antes de los primeros tres minutos (Weinberg, 2000, págs. 96,97). Esta sección empieza con un acompañamiento de negras y blancas en clave de fa que da la sensación
de un caminante cojo o desganado, lleva una melodía clara que no llega a desarrollarse y se deforma en el compás 55. Esto refleja la dificultad que tiene este núcleo para mantenerse, cercano a los 14 segundos.

Los acordes que lo componen, en relación a la tabla 3 son: Bb°+A (Tercera) y C°+B (Tercera)

Del compás 59 al 79 se presenta la sección D con una textura homofónica y un ciclo irregular, caracterizando al Deuterio, formado por un protón y un neutrón. Con una cohesión muy débil desde los primeros 13,84 segundos, hasta pasados los 3 minutos y 46 segundos después de la gran explosión, cuando logró mantenerse (Weinberg, 2000, págs. 97,98).

Empieza con un acompañamiento estable y una melodía que no llega a desarrollarse. Cuando retoma en el compás 67, esta se deforma. El acompañamiento continúa solo, finalizando e iniciando de nuevo hasta que definitivamente no lo logra en el último compás. Esto hace referencia a la muy baja cohesión del Deuterio. El movimiento finaliza en el compás 75 y presenta una coda del 76 al 79. Anexos págs. 113-116

Los acordes que componen esta sección, de acuerdo a la tabla 3 son: Gm, Cm, Abm, Dbm

<table>
<thead>
<tr>
<th>Palabras clave</th>
<th>Abreviatura</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sección</td>
<td>Sec</td>
</tr>
<tr>
<td>Idea musical</td>
<td>IM</td>
</tr>
<tr>
<td>Compases</td>
<td>Com</td>
</tr>
<tr>
<td>Plan armónico</td>
<td>PA</td>
</tr>
<tr>
<td>Tercera</td>
<td>Ter</td>
</tr>
</tbody>
</table>

Tabla 10. *Palabras clave para el análisis de la forma en Vida*
Tabla 11. Análisis de Vida

<table>
<thead>
<tr>
<th>Sec IM Com PA=C</th>
<th>A</th>
<th>Episodio A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IM1</td>
<td>IM2</td>
<td>IM3</td>
</tr>
<tr>
<td>1-2</td>
<td>3-4</td>
<td>5-6</td>
<td>7-8</td>
</tr>
<tr>
<td>G°</td>
<td>G°</td>
<td>G°</td>
<td>G°</td>
</tr>
<tr>
<td>Gb⁺</td>
<td>Gb⁺</td>
<td>Gb⁺</td>
<td>Gb⁺</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sec IM Com PA=C</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IM6</td>
</tr>
<tr>
<td>Gm (Ter)</td>
<td>Gm (Ter)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sec IM Com PA=C</th>
<th>D</th>
<th>Final</th>
<th>Coda</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IM9</td>
<td>IM10</td>
<td>IM9'</td>
</tr>
<tr>
<td>45-46</td>
<td>47-50</td>
<td>51-54</td>
<td>55-58</td>
</tr>
<tr>
<td>A (Ter)</td>
<td>C°</td>
<td>Bb°</td>
<td>B (Ter)</td>
</tr>
</tbody>
</table>
Conclusiones

Cuando este proceso investigativo dio inicio, El problema a nivel personal relacionado con el área de composición y su aprendizaje fue lo primero en manifestarse, seguido de la justificación que buscó darle un lugar a esta investigación, como referente futuro para estudiantes de música, compositores y profesores que deseen acercarse al campo de la Investigación Artística.

Se establecieron los objetivos a seguir durante el proceso y el diseño metodológico, que serviría para llevar a cabo tales objetivos y dar respuesta a la pregunta ¿Cómo abordar un acto creativo que amplíe mis conocimientos y desencadene un proceso compositivo a partir de un impulso extra musical?

Durante el capítulo tres se abordaron temas concernientes al proceso, vinculados a la Investigación artística, análisis musical enfocado en la Teoría de conjuntos, Serialismo integral y la Teoría del Big Bang. En el capítulo cuatro se introducen las primeras ideas compositivas que dieron origen a un intento de creación previa, pensado en aquél momento para formato de sintetizador y piano, llevando a cabo una exploración sonora. Este se realizó de acuerdo a los momentos más importantes del universo primitivo según Weinberg (2000) y posteriormente se hizo una reflexión que determinó los elementos técnicos generales del discurso musical, utilizados en la composición final y cada uno de sus cuatro movimientos. En el capítulo cinco se elaboró un análisis detallado de esta, desarrollada en un formato pianístico, que despliega los elementos técnicos musicales, procedentes del proceso investigativo, entre los cuales se encuentran las alturas, ritmo, dinámicas y forma.

Durante el transcurso de toda la investigación se llevó un diario de campo, con notas de nivel subjetivo vinculadas a experiencias, sentimientos y frustraciones. Además, del capítulo cuatro al
cinco se efectuaron las reflexiones de campo, con las cuales se elaboró una descripción más técnica en cuanto a toma de decisiones durante el proceso creativo.

Con respecto a lo anterior se concluye que los elementos técnicos del discurso musical, en interacción con el referente extra musical (Weinberg, Los Tres Primeros Minutos del Universo, 2000), se generaron y a partir de los mismos se elaboró el proceso compositivo. Esto es verificable en el Capítulo cinco, cuando se determinan los siguientes elementos:

Las alturas, procedentes de las reacciones descritas en la figura 21; el tratamiento de las alturas, que luego se convierten en intervalos en la figura 22 y 23, resultado de un proceso inspirado en la teoría de conjuntos (Walters, 2001), simbolizando las reacciones más importantes después del primer centésimo de segundo (Weinberg, 2000, pág. 94); la construcción de acordes en la figura 24 y tabla 3, relacionados con las notas de la figura 21 y la formación de los primeros núcleos de los 13, 84 segundos a los 3 minutos después de la gran explosión (Weinberg, 2000, págs. 96,97).

El tratamiento rítmico en cada movimiento, como la inspiración en el Serialismo integral del primer movimiento simbolizando las partículas más abundantes y algunas otras que consideré importantes (Weinberg, 2000, págs. 92,93); realizando matices agógicos en el segundo movimiento de acuerdo al aumento de colisiones con el descenso gradual de temperatura, pasados 0,11 segundos después de la gran explosión (Weinberg, 2000, pág. 94); en el uso de elementos descritos en la figura 22 y 26 para el tercer movimiento, en el que se resalta lo ocurrido 1,09 segundos después de la gran explosión, cuando la temperatura descendió a los 10.000 millones de grados Kelvin, ocasionando un choque más rápido entre electrones y positrones (Weinberg, 2000, pág. 95); y en el flujo rítmico musical inestable del cuarto movimiento relacionado con la
formación y duración de los primeros núcleos, de los 13, 82 segundos a los 3 minutos después de la gran explosión (Weinberg, 2000, pág. 96-98).

El tratamiento de dinámicas en el primer movimiento, específicamente los primeros compases, cuando se hace alusión a las temperaturas súper elevadas anteriores al primer centésimo de segundo (Weinberg, 2000, pág. 91); en el segundo movimiento, asignando dinámicas forte y piano a los intervalos que representan choques y resultados a 30.000 millones de grados Kelvin (Weinberg, 2000, pág. 94); En el tercer movimiento, en el contraste de dinámicas, cuando se representan los choques masivos entre electrones y positrones, en contraposición al choque entre fotones (Weinberg, 2000, pág. 95).

En cuanto a la forma, se fijaron cuatro movimientos, de acuerdo a los acontecimientos más importantes durante los primeros tres minutos del Universo (Weinberg, 2000).

La pregunta de investigación se resolvió durante el desarrollo de este trabajo, en el momento que se desencadenó el proceso compositivo, observable en los capítulo cuatro y cinco, basado en los tres primeros minutos del Universo (Weinberg, 2000), como impulso extra musical.

Los conocimientos que traía antes de empezar este trabajo han crecido, conforme a los interrogantes y problemas que surgieron en el camino. Percibo que la necesidad de realizar determinadas tareas compositivas, como definir las notas y ritmo me impulsaron a investigar la Teoría de conjuntos y el Serialismo integral. El no encontrar satisfacción con lo escrito musicalmente, me incentivó una y otra vez a retomar desde cero hasta encontrar el sonido apropiado, según mi percepción, realizando diagnósticos constantes y explorando posibles soluciones. Sin duda estas fueron piezas importantes en mi desarrollo como Investigadora.
creadora, en razón a la evidente trascendencia del proceso desde el inicio hasta el final (López Cano & San Cristóbal, 2014)

He podido observar durante todo este tiempo, que no hay momento determinado para que un músico aborde la composición, debido a que su propia búsqueda comprende un aprendizaje personal y diferente. Si desea profundizar en el campo de la Investigación artística juntará lo anterior con la construcción de una propuesta de creación propia y un aporte a la música de nuestros días, permitiendo que esta adquiera niveles más significativos que perceptivos, en cuanto a las acciones que anteceden a la obra de arte (Daza Cuartas, 2009, pág. 89)

La investigación que realicé conlleva a nuevos desafíos, debido a que me gustaría pasar el resultado compositivo del formato pianístico al formato orquestal, lo que significaría adquirir conocimiento en este campo. Además como profesora de piano, sería interesante abordar otro trabajo de investigación artística, encaminado a componer piezas musicales para mis estudiantes, pues he podido observar que en la enseñanza de algunos aspectos técnicos hace falta crear ejercicios más musicales y estimulantes para los estudiantes.

Para finalizar quisiera resaltar una parte del proceso, específicamente el momento en el que me encontraba escribiendo los dos primeros movimientos. En un punto la música empezó a tomar control de sí misma y esto representó en aquél entonces una limitación. Sin embargo logré conducir este hecho a una escritura más expresiva e imaginativa en los últimos dos movimientos, obteniendo finalmente un resultado satisfactorio a juicio personal.
Bibliografía

NASA. (14 de Abril de 2014). *National Aeronautics and Space Administration*. Obtenido de https://map.gsfc.nasa.gov/media/121238/index.html

Diario de campo

10/02/17

Acabé de ingresar a noveno semestre y decidí cambiar el tema de mi tesis. No sé qué hacer. Durante las vacaciones estuve tocando piando y viendo la serie de Cosmos. Quisiera poder hacer algo relacionado con el universo.

14/02/17

Hoy tuve mi primera clase de Astronomía General (Una electiva). Debíamos formar grupos para realizar una exposición al final del semestre. El profesor estaba escribiendo en el tablero los temas a exponer, de los cuales debíamos escoger uno por grupo. De repente escribió Big Bang y sentí algo indescriptible, como una revelación, entonces dije “Este será el tema de mi monografía”

16/02/17

A las 10:00am me encontré con un compañero que está trabajando Investigación -Creación en su monografía. Le conté que estaba preocupada porque aunque ya tenía una idea (El Big Bang) no sabía cómo encaminarla y le pregunté por su trabajo. A medida que hablaba sobre esto me pregunté “¿Y si hago una composición?”. Le comenté lo que había pensado y me dijo que sería interesante encaminarlo hacia Investigación-Creación.

24/02/17

El día de hoy me encontré por primera vez con mi asesor y fue algo muy enriquecedor debido a que tenía muchas ideas sueltas y él me ayudó a darles un orden. Estoy pensando en tomar la
teoría del Big Bang como una técnica compositiva, ya que la idea no es hacer una composición que trate de mostrar por medio del sonido como fue La Gran Explosión sino usar elementos de esta para elaborar un cuadro que determine la forma, armonía, ritmo, etc. De la composición. La pregunta es ¿Cómo hacerlo? ¿Acaso puedo relacionar expansión con forma, o materia con textura musical?

25/02/17

Hoy en la noche tuve clase de astronomía. Esperé a que esta terminara y me acerqué a la profesora para comentarle a grandes rasgos mi idea. Le pedí ayuda en cuanto a textos que posiblemente me podrían servir para ahondar más en el tema del Big Bang. Ella me dio varios títulos y en un momento me hizo sentir frustrada, haciéndome entender que era un tema muy complejo de abordar incluso para sus estudiantes de física. Cuando salí del edificio me pregunté si estaba perdiendo el tiempo con este tema.

01/03/17

Hoy nos reunimos nuevamente con mi asesor. Estuve buscando información sobre el Big Bang y encontré un libro de divulgación científica llamado Los Tres Primeros Minutos del Universo por Steven Weinberg, en el cual decidí enfocarme. De todas formas no pude ocultar mi frustración y el asesor me animó a continuar.

14/04/17
Hace solo unas horas estuve en un concierto que ofreció el planetario titulado La Música del Cosmos. Se hizo con el fin de homenajear al astrónomo Carl Sagan. Estos sonidos en su mayoría hechos con sintetizador me han inspirado para seguir adelante con la monografía

24/04/17

El profesor de proyecto 1 revisó el anteproyecto y está aprobado. Eso me motiva mucho.

01/05/17

Estuve en el Desierto de la Tatacoa del 28 de mayo al 30 de mayo con el fin de observar las estrellas y demás cuerpos celestes. Es una lástima que no se pudo ver mucho debido a que el cielo estuvo nublado casi todo el tiempo. Este se despejó por 5 minutos una noche y tuve la oportunidad de ver a Júpiter y dos de sus lunas.

22/05/17

Hoy realicé una exposición para mi asesor, referente al Big Bang. Me sugirió que emezara a tomar esos elementos y buscar darles un sentido musical.

27/05/17

He escogido varios elementos que me pueden servir para la composición, el único problema es que no encuentro cómo darles forma.

Textura Musical:

1. Materia – Antimateria (Permiten la formación de un Fotón ¿Me llevaría a la resolución de un acorde X?)
2. Densidad 4×10^9 °C (¿Podrían ser notas?)

Armonía:

1. Partículas elementales: Electrones, positrones, neutrinos fantasmal y fotones (¿Podrían ser las notas base para la construcción de acordes?)

2. Núcleos complejos ¿Cómo puedo representarlos?

Ritmo:

1. Ya que la temperatura fue descendiendo ¿Podría hacer que el ritmo de la composición lo haga, en representación de la misma?

Forma:

1. El universo puede estarse curvando sobre sí mismo ¿Cómo representar esto musicalmente?

28/05/17

Acabo de ver un fragmento de la entrevista que le hicieron a Jhon Cage para el documental "Écoute" (Escucha), en New York, año 1991, en la que habla sobre la importancia de los sonidos, el silencio y de la música que aún no fue escrita.

28/05/17

Estoy escribiendo un intento de composición. Creo que me servirá también para el trabajo final de astronomía porque quieren que cada grupo exponga el tema que eligió de forma didáctica.
05/06/17

Hoy le mostré a mi asesor los adelantos y le gustó. Sin embargo me dijo que estaba tomando muchos elementos a la vez y había algunos que salían de la nada, como es el caso de las notas sueltas, que no tienen fundamentos, como sí lo tienen otras partes de la composición. Además me centré en hacer una pieza demasiado minimalista y esto no permite un mayor desarrollo de la misma.

27/06/17

Estaba leyendo que un elemento importante para demostrar la Teoría del Big Bang era que las galaxias se están alejando. Se puede corroborar por medio del efecto Doppler pues la mayoría de galaxias tienen un corrimiento al rojo. Según entiendo el color de las mismas tiende al azul si se acercan y al rojo si se alejan. El problema es que no logro comprender el efecto Doppler en la luz. Entenderlo aplicado al sonido me es más sencillo que aplicado a la luz.

Ahora me confundí más, porque hace una semana vi en cosmos que cuando la luz blanca atraviesa el cristal aparecen ondas de luz con colores diferentes. Las ondas azules se mueven más lento que las rojas, lo que significa que la longitud de onda es menor en el color rojo. Entonces si una galaxia se aleja el corrimiento ¿no debería ser al azul, ya que la longitud de onda es mayor cada vez?

\[\lambda'/\lambda = T'/T = 1 + V/C \] (No entiendo)

29/07/17

Estaba pensando en el principio cosmológico, llamado así por Edward Arthur Milne, y es hermoso, pero no puedo dejar de pensar en la distancia y velocidad proporcionales, provocando
que las galaxias se distancien cada vez más y con una mayor velocidad unas de otras ¿hasta llegar a la velocidad de la luz o superarla?.

La distancian entonces se define porque es proporcional a la velocidad (solo habría que definir la velocidad a la que se mueve una galaxia)

- Debo leer sobre efecto Doppler relativista, derponto esto me servirá de algún modo en mi composición.

31/07/17

La ley de Hubble. Voy entendiendo poco a poco cómo se sabe si una galaxia se acerca o se aleja. De todas formas tengo muchas preguntas sobre los corrimientos al rojo o al azul.

20/08/17

¿Es acaso el universo finito o infinito? Si es finito cabe la posibilidad de que se curve sobre sí mismo por la gravitación existente que va ralentizando poco a poco los cuerpos que se alejan. El punto es que no entiendo cómo eso llevaría a curvar el universo convirtiéndolo en algo parecido a una esfera. Al menos estoy acercándome al por qué ningún elemento muy lejano a nosotros estaría alejándose a la velocidad de la luz. Entre galaxia y galaxia existe una atracción (no sé si podría llamarse gravitación) lo que conlleva a que la velocidad a la que se alejan cada vez sea menor, pero ¿entonces en algún punto se detendrán y la fuerza de atracción será mayor de tal forma que el universo se contraiga nuevamente? Cada vez me identifico más con la idea de que el universo no es infinito. La velocidad de 15 kilómetros por segundo por cada millón de años luz ha disminuido ¿Cuánto más disminuirá?

08/09/17
Ahora me encuentro con algo que es obvio. A mayor distancia es más complejo saber la verdadera velocidad a la que se mueve una galaxia (o se aleja, según el Corrimiento al rojo), desde nuestro perspectiva en este caso. Es difícil debido a que la luz que percibimos fue enviada hace miles de millones de años y no sabemos si más. Posiblemente esa luz actualmente sea diferente, el cuerpo no exista o haya evolucionado como planteó J. P. Ostriker y S. D. Tremaine (por ejemplo si era una galaxia que ahora se unió a otra, como pasará en el futuro con Andrómeda y la Vía Láctea)

¿Cómo es posible que el universo se esté desacelerando pero igual siga expandiéndose eternamente? (Parece que la deceleración de las galaxias distantes es muy pequeña y se mueven a velocidades mayores que la de escape)

20/09/17

Trabajar sin asesor es muy difícil. No siento que esté tomando un rumbo concreto.

21/09/17

Cuando se comprime un fluido generalmente aumenta en temperatura. Lo que nos dice que el universo en algún momento fue más caliente debido a que estaba más comprimido de lo que está ahora (por la expansión que se evidencia gracias a los corrimientos al rojo observados)

06/10/17

Me siento feliz de poder entender un poco la parte de E=m en la ecuación de Einstein. Sería muy presuntuoso decir más porque es algo realmente complejo. La energía puede producir masa y la masa puede producir energía. Dos fotones al chocar entre sí pueden producir partículas materiales (o anti materiales) y a su vez la aniquilación entre dos partículas como un neutrón y
positrón produce fotones. Ahora… no estoy segura de si los fotones pueden considerarse como energía o solo la energía hace parte de ellos. Debo leer más al respecto y ver si esto resultará útil para mi composición.

20/10/17

Dos fotones chochan y desaparecen mientras toda su energía y momento van a la producción de dos o más partículas materiales.

23/10/17

¿Qué habría pasado si al llegar la aniquilación, con una temperatura de 10^9 de grados K, en vez de un exceso de partículas, según lo describe el libro en la página 81, hubiese existido un exceso de antipartículas? ¿El universo actual sería un Anti-Universo? De ser así debería crear la composición para un piano de antimateria.

01/12/17

Entonces sabemos que el número bariónico por fotón parece ser de uno en 1000 millones (Una partícula nuclear por cada 1000 millones de fotones). Se dice que luego que el universo se enfrió por debajo del umbral, una cantidad superior de materia que de antimateria permitió que se aniquilara en gran medida la de menor cantidad y así se formó el universo que conocemos. Pero hay quienes piensan que el universo actual tiene la misma cantidad de materia y antimateria. Sin embargo es difícil afirmarlo porque no se han observado cantidades apreciables de antimateria en el universo.
12/12/17

Según los aportes de Hugh David Politzer, David Gross y Frank Wilczek, es más claro ver la razón del por qué, hasta donde llega mi entendimiento, a una temperatura tan alta como en el primer centésimo de segundo casi no podían existir hadrones si es que ni existían debido a que estos se componen de quarks, los mismos que a una energía tan elevada y una cercanía tal, como nunca antes la hubo se comportaban como partículas libres. Entonces el primer centésimo de segundo estaba constituido por partículas elementales libres.

25/12/17

Ahora que he “terminado de leer el libro” debo empezar con la composición. Digo que “he terminado” porque he parado constantemente para informarme sobre los términos desconocidos y la verdad no siento que sea suficiente. Es por esto que leeré las notas que he tomado y buscaré más información sobre algunos conceptos que me falta aclarar. La semana pasada me encontré con un primo que tiene nociones en cuanto a física y me ha ayudado a entender matemáticamente elementos tales como el efecto Doopler y la densidad crítica.

04/01/18

Hoy vi un documental llamado ¿Qué sucedió antes del principio? – Grandes misterios del universo con Morgan Freeman y pude hacerme una mejor imagen de cómo un universo compuesto de energía pura antes del primer segundo de su existencia llegó a crear materia. La respuesta parece encontrarse en la fórmula $E=mc^2$. Pero, cuando se creó la materia, ¿qué hizo que las partículas nucleares se unieran para formar estrellas y galaxias? Tenía entendido que la reducción en la temperatura lo permitió pero es cierto que se necesita de una fuerza que atraiga a las partículas.
Recuerdo haber leído antes algo referente a esto, debo mirar en mis apuntes, sin embargo me quedo pensando en ¿Qué es la partícula de Higgs o el bosón de Higgs?. Si existe cumplió un papel supremamente importante en la formación de materia. No existiríamos sin la materia, todo lo que habría sería un universo lleno de radiación. ¿La antimateria habría encontrado la forma de retomar su lugar y vencer a la materia? Son muchas preguntas.

09/01/18

Hoy vi un video en youtube en el que hacen un análisis a la banda sonora de Star Wars y me quedé sorprendida al ver como se le asignó una melodía a cada personaje, incluida la fuerza. Se usaron los modos de acuerdo a cada personaje y situación que enfrentaba. No voy a usar los modos pero me sirvió de inspiración. Quizá pueda hacer una melodía que represente a cada partícula elemental o a los sucesos que acontecen durante los primeros tres minutos.

24/01/18

En estos días estuve organizando el resumen general del libro, Los primeros tres minutos del Universo. Tomé dicho resumen y empecé a realizar una extracción de las ideas más importantes para realizar la composición. Al parecer hay muchas cosas importantes, por esto debo hacer una reducción de datos. De otra forma se abordarían muchos temas y la composición sería aún más compleja de realizar, sin mencionar el poco tiempo que me queda.

15/02/18

Las últimas dos semanas no conté con un computador, sin embargo tengo uno nuevamente y puedo seguir con mi trabajo.
El lunes 12 de febrero me encontré con mi asesor y estuvimos hablando de cómo empezar a realizar la composición. Escogimos algunos elementos clave para trabajar entre los que se encuentran: la forma, armonía (conjuntos interválicos), registro, ritmo y articulaciones.

En cuanto a la forma se van a establecer los momentos más significativos de los primeros tres minutos, para de esta forma establecer el número de movimientos o secciones que tendrá la composición.

Los conjuntos interválicos se harán utilizando las partículas fundamentales y más importantes después del primer centésimo de segundo, a las cuales se les asignará un determinado número de notas, las cuales formarán diversos acordes a medida que la composición avanza. A esta parte de la composición se le añade la textura, que estará relacionado con la densidad cambiante del universo y de las notas establecidas. A medida que el universo se expande, el registro también lo hará.

Había pensado que el ritmo estaría relacionado con los primeros tres minutos, pero debido a que en pequeñas magnitudes de tiempo pasan acontecimientos muy importantes, no se mantendrá una medida temporal exacta de principio a fin.

20/02/18

Hoy estuve buscando algunas características que pudieran servirme para caracterizar a las partículas. Pensé que de pronto podría usar las cargas eléctricas pero algunas de ellas tienen cargas iguales. También pensé en usar su símbolo pero sinceramente no sé cómo.
Entre ayer y hoy he tenido mucho estrés porque ninguna de las ideas que he tenido para caracterizar las partículas me ha convencido. Pensé en usar el do central como el lugar del que parte el fotón por ser partícula y antipartícula al tiempo. Planeaba que las notas ascendentes a partir de esta fueran materia y las descendentes fueran antimateria pero no estoy segura. Luego pensé en usar los modos, buscando uno que se acomodara a cada partícula. Por ejemplo el fotón sería dórico por no ser ni muy brillante ni muy oscuro, el electrón eólico por tener una carga negativa, el positrón jónico por su carga positiva, el neutrino y el antineutrino mixolidio por ser neutrales, y el protón junto al neutrón lidio por la majestuosidad que genera su unión en la formación de los primeros núcleos. Esta idea me suena mucho pero tengo problemas para idear como expresar las colisiones del segundo movimiento. Siento que no va a funcionar.

Ayer nos encontramos con mi asesor y le estuvimos dando vueltas a las ideas que había pensado entre el 22 y el 23. Duramos bastante tiempo en esto hasta que por fin se decidió que voy a usar el plano de materia y antimateria. Yo había pensado en asignarle valores numéricos a las partículas y antipartículas, lo que efectivamente funciona. Ahora cuento con intervalos que salieron de estos números aplicando la teoría de conjuntos, y de estas salió lo que parece ser una escala.

He terminado el primer movimiento. Utilicé algunos elementos del primer intento compositivo porque me servían para transmitir la idea del primer movimiento.
05/03/18

Mi asesor escuchó lo que he compuesto y me dijo que era muy acertado. Sin embargo le gustaría que algunas partes sonaran más lento para que se logren apreciar aún más los sonidos del piano que simbolizan las partículas fundamentales. También piensa que es bueno pensar muy bien las notas sin dejar a un lado el fluir propio de la música. Esta semana espero realizar el segundo movimiento.

09/03/18

He tenido problemas de inspiración estos días y me ha costado escoger los elementos a utilizar, sin embargo lo estoy logrando. Aún está muy corto el segundo movimiento, espero que más ideas surjan estos días.

11/03/18

Por fin tiene forma el segundo movimiento y logré que durara aproximadamente 2 minutos.

14/03/18

Hoy nos vimos con mi asesor y corregimos algunas cosas del primer movimiento. Estaba sonando muy predecible, lo que contradecía la idea del movimiento aleatorio y en todas las direcciones de las partículas.

28/03/18

Desde el lunes estuve escribiendo el marco teórico y revisando el eje fundamental de la composición ¡me di cuenta de un error grave en la asignación de notas! Había hecho la gráfica de las reacciones entre partículas y una de estas estaba mal. El choque entre antineutrino y protón no
da positrón y electrón, sino positrón y neutrón. Se cambiaron el antineutrino y el neutrón. Sin embargo siento que los intervalos tienen más sentido, incluyendo al neutrino que había dejado como un D por descarte y no porque en realidad cuadrara en esa nota.

30/03/18

Fue difícil pero creo que primer y segundo movimiento están corregidos. Ya empecé con el tercero.

02/04/18

Hace una semana revisamos la fecha de entrega con mi asesor y decidimos que pediríamos el tiempo extemporáneo porque aún faltan cosas importantes de la composición. Me dijo que hablará con la otra asesora sobre esto, pero que es posible entregar en poco tiempo. Hoy revisamos los movimientos y están bien.

03/04/18

Casi no hubo tiempo para la revisión con la otra asesora. De hecho solo tuvimos 10 minutos y se leyó el documento por encima. Ella me dice que no se podrá tocar la composición en vivo por tiempo pero hablaré con mi asesor específico para confirmarlo. Ella dice que este semestre no hay tiempo extemporáneo, lo que me deja preocupada y desanimada.

05/04/18

Empecé a organizar el documento final, pero debido a problemas, me ha costado componer. Sin embargo llevo un minuto del tercer movimiento, siento que ya dije musicalmente todo lo que tenía que decir y no se me ocurre qué más puedo escribir.
06/04/18

Hoy estuve redactando el documento y trabajé en el capítulo que se titula Del Big Bang a la Música. Antes pensaba que esta parte debía ir en el análisis pero mi asesor me corrigió y dijo que debería ir aparte.

09/04/18

Revisamos el tercer movimiento y encontramos que las ideas principales ya se habían planteado pero falta desarrollarlas. Esto podría ampliar la duración de la sección y las ideas musicales serían más claras.

12/04/18

Hoy trabajé en desarrollar las ideas musicales del tercer movimiento y siento que está quedando más completo y claro. Ya completé la primera parte del mismo y voy a complementar un poco más la segunda y tercera en estos días.

13/04/18

Hoy planeaba continuar con el trabajo de ayer pero me sentí muy inspirada para escribir el último movimiento. He tenido sueños con él y suena muy hermoso, sin embargo cuando despierto no recuerdo mucho. Escribí algunas cosas pero no me cuadran, siento que no es como debe sonar.

16/04/18

Hoy que nos vimos con mi asesor me di cuenta del error que estaba cometiendo con este movimiento. Lo estaba reduciendo a las notas que solo representaban a los protones y neutrones. Sin embargo se puede hacer una mejor relación partiendo del fotón y formar terceras mayores y
menores, lo que sin duda amplía en gran manera las posibilidades compositivas. Me siento muy entusiasmada con este movimiento. El nombre que pensé para él es Vida.

20/04/18

Ayer escribí un cuadro, del cual salen terceras provenientes de una relación entre algunas notas fundamentales y los primeros núcleos que se formaron. Partiendo de esto, entre ayer y hoy estuve escribiendo el movimiento número cuatro. Siento que suena mejor pero me hace falta algo.

27/04/18

Durante esta semana trabajé en el cuarto movimiento. Me estoy estresando porque no encuentro la forma en la que podría sonar como espero. Me senté en el piano y empecé a usar algunos de los acordes que salieron la vez pasada y tengo algunas ideas así que las voy a escribir.

04/05/18

Esta semana me dediqué a escribir el trabajo como tal.

11/05/18

Entre ayer y hoy me decidí a terminar el tercer movimiento con las correcciones que hizo el profesor. Estoy feliz porque logré que sonara como esperaba.

25/05/18

Finalmente, después de casi un mes, logré terminar el cuarto movimiento. Había parado y retomado varias veces sin lograr algo convincente, hasta que hoy por fin las piezas tomaron la forma que había estado buscando todo este tiempo.
Primer intento

La Gran Explosión

Ana Milena Cruz

Andante ($= 80$)
La Gran Explosión
La Gran Explosión
La Gran Explosión

Pno.

Lead

45

dolce

Pno.

Lead
La Gran Explosión
La Gran Explosión
Resultado final

Los tres primeros minutos del Universo

1. PARTICULAS ELEMENTALES

Adagio $\frac{4}{4}$

Ana Milena Cruz Pacheco

© Ana Milena Cruz Pacheco - UPN, 2018
1. PARTICULAS ELEMENTALES
2. COLISIONES

Andante \(\text{=} 100 \)

21

\[\text{mf} \quad \text{dim.} \]

26

\[\text{f} \quad \text{dim.} \quad \text{mf} \]

31

\[\text{dim.} \]

35

\[\text{rit.} \quad \text{p} \]

2. COLISIONES
Los tres primeros minutos del Universo

3. ANIQUILACIÓN

Moderato $\frac{\text{=} 120}{\text{}}$

agitato

Ana Milena Cruz Pacheco

© Ana Milena Cruz Pacheco - UPN, 2018
3. ANIQUILACIÓN
3. ANIQUILACIÓN
4. VIDA
4. VIDA
4. VIDA